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1. Brief introduction of the magnetic pair
creation controlled outer gap model

2. Two-layer model and the fitting of the
phase-averaged spectra of the gamma-ray
pulsars

3. Application of a 3-D model to fit the energy
dependent light curves of Vela Pulsar
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The shape of the spectrum can be
determined by the current in the main

acceleration region, the size of the main
acceleration, and the thickness of the gap.
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a 3-D magnetic field structure.
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3. 3-D MODEL

The 3-D model is an extension of the two-layer model to
a 3-D magnetic field structure.

Why 30!

The two-layer wmodel can only be used to study the
phase-averaged spectruwm, it dose not consider the
inclination angle and viewing angle of the pulsar, and
it cannot provide the light curve and the phase-
resolved spectra, which can tell us the most detailed
information from the pulsar magnetosphere.
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Table 1:: Parameters

Observed Parameters Fitting Parameters Deduced Parameters

Name - a4 (kpe) b2 (107 %phem 28 ") frie 1—g1 hifhe AQd? (kpe?)  mgop LAY (10%%erg/s) Al d(AQ = 1)

JO0OT+7303 1.4+03 7% 1.8 0.65 008 0967 4.508 0.538 124.1 2.3"_‘.‘;._‘33._ 2.12
J0248+6021* 2.9 3T+ 0.37 010 0953 6.875 0.561 10.63 0.08-1.72 2.62
J0357+32 . o EESK 0.80 012 0827 0.72 0.577 2.56 = 0.85
J0631+1036° 0.75-3.62 LESN 0.55 010 0953 18 0.561 28.78 1.37-32 4.24
J0633+0632 o 0.53 010  0.947 4.81 0.562 17.72 e 2.19
JO633+1746 0.250°5 122 305.3 + 3.5 0.76 015 0933 0.125 0.590 14.49 Sy - 0.35

J0659+1414° : 0.288°3 035 10+ 1.4 023 005 0920 0.12442 0.545 0.4624 L5105 0.35
J0742.2822° 207103 318+ 1.2 0.30 008 0920 4.2849 0.559 3.861 12334 2.07

-

JOR35-4510° 0.2877 0013 1061 = 7.0 0.16 008 0927 0.08237 0.557 28,18 13213 0.29

J1028-5819* 2.33 = 0.70 19.6 = 3.1 0.27 009 0947 1.9544 0.557 16.38 0.3675-3% 1.40

J1048.5832* 3.48 2.71 = 0.81 19.7 % 3.0 0.20 0.10 0947 1.95291 0.562 16.08 0277537 1 141
J1057-5226* 0.72 £ 0.2 30.45 + 1.7 0.60 015 0933 0.7257 0.590 £.48 L4t R
J1418-6058 2.5 27.7 = 8.3 0.16 010 0940 2.2 0.564 20.27 0.09.0.55 !
J1420-6048° : 5.6=17 242479 0.11 005  0.947 0.543 13.31 0.04503
J1459.60 . .- 17.8 £ 3.4 0.22 005 0927 1.45 0.543 9.786

J1509.5850° (8, 2.6+ 0.8 3.7+ 1.4 041 009 0960 7.008 0.554 35.49 1057545
J1709.4429° 1.4-3.6 149.8 4 4.1 0.25 005  0.947 0.63 0.538 53.28 0.05.0.32
J1718.3825° 4. 3.82 = 1.15 9.1 £ 5.8 0.18 011 0947 2.48071 0.567 7.29 0175918
J1732-31 .- 25.3 % 3.0 050 0.1 0933 1.62 0.570 17

J1741.2054 0.38 = 0.11 20.3 + 2.0 0.70 010  0.960 0.361 0.559 25t 150
J1747.2958° 2.5 18.2 + 4.2 0.15 010 0953 1.2 0.561 0.05-0.30
J1809.2332 - 1.7+ 1.0 49.5 3.0 0.35 007  0.947 0.7225 0.548 0.25%222
J1813-1246 - 28.1 3.5 013 005 0927 1.25 0.543

J1826-1256 .- 41.8 % 4.1 0.19 007  0.947 1.28 0.548

( Wany, Taka#a, (@f @}leng, %@ZZ @)
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Table 1:: Parameters

Observed Parameters Fitting Parametens Deduced Parameters
B

Name P(ms) B2 4 (kpe) l.‘.' (107 %phem™ s ") frie 1—=g1 hi/hz  AQd" (kpe?)  mgop ! (10 erg/s) Aldg; d(AQ = 1)

JOR35-4510° 89,3 3.40 0.287 5015 1061 + 7.0 008 0927 0.08237 0.557 A8 >3t 0.29
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Observed Parameters Fitting Parametens Deduced Parameters
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‘\/ first open line
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the position of the field line



acceleration regions,

X

First open ine, a=1

\4

main acceleration region, it 1 —0. O7h1 =g |

screening region, it 0.93<a< 1 — . ()7

Divide the gap into many layers, then calculate the radiation from each layer, and
add them together.







Find the inclination angle

and Viewing angle 139

making the light curve
determined bﬂ the feld

line structure




Find the inclination angle
and viewing angle l:)ﬂ
making the light curve
determined bg the field

line structure

;i ‘9@\\\@///




Find the inclination angle
and viewing angle l:)ﬂ
making the |ight curve
determined bg the field

line structure

I <




Find the inclination angle
and viewing angle }39
making the light curve
determined bg the field

line structure

, @@///




Find the inclination angle
and viewing angle bg
making the |ight curve
determined bg the field

line structure

Hbdeg
380deg




Using the method in Tang et al (2008) to

calculate the phase averaged spectrum
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We use the method introduced in
Tang et al (2008) to calculate the
phase resolved spectra, then

infegrate them
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SCREENING REGION

Most of the pairs screen out the acceleration
electric field are come from the stellar surface.

(T&]@f&, Wan7 ((g) @}leng, %@Z/@)

More pairs available in the screening region, the
thinner it is.

The closer the null charge surface to the stellar
surface, the more pairs available.

The closer the NCS is to the stellar surface fhe

thinner the screening region is.
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If the gap is thicker, there are more particles in if.
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DISTRIBUTION OF THE CURRENTS IN THE SCREENING
REGION AND MAIN ACCELERATION REGION

If the gap is thicker, there are more particles in if.
N = hop o f
Becauvse of the E x B drift
ha(Pp)p(@p) < f(@p + Ady)

h2(¢p) o f(ﬁbp)r(@?)
e ne
A areree

f(Pp + Adp)
f(@p)r(dp)

p(Pp) = C1 + C2
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Why the P3 moves!




Why the P3 moves!

The reason will become clear after the effects of the
distributions on the light curves are shown.
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The effect of the distribution of cuyrrent on the
energy denendent light curves

hi/hs = 0.927

f=0.16
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1. In the magnetic pair creation controlled outer gap model, the main source
of the pairs, which screen out the accelerating electric field in the gap, are
created near the stellar surface by the strong multipole magnetic field.

2. The two-layer wmodel, which is a simplification of the magnetic pair
creation controlled outer gap model , can be used to fit most of the phase-
averaged spectra of the gamma-ray pulsars observed by Ferwi-LAT.

3. The 3-D wmodel, which is an extension of the two-layer model to a 3-P field
structure, can explain the energy-dependent light curves of the Vela Pulsar.
But some distributions are necessary.

4. The third peak of Vela cannot be provided by the structure of the magnetic
field lines, it is cavsed by the distributions of the current and the thickness
of the gap in the outer gap.







