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A. AIMS 

1. Experimentally determine the relationship between the length of a stretched string and 

the frequencies at which resonance occurs at a constant tension;  

2. Verify the variation of the wave frequency with the tension in the stretched string with 

a constant length;  

3. Investigate the resonance modes of a stretched string. 

4. Determine the velocity of the wave  

B. INTRODUCTION 

The standard qualitative sonometer experiments can be performed by varying the 

tension, length, and linear density a string and observing the effects on the pitch of the plucked 

string. Also, by adding the Driver/Detector Coils, a function generator capable of delivering 

0.5A of current, and an oscilloscope, the quantitative experiments can be performed for 

verifying the equations for wave motion on a string: 
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where λ = wavelength (m) 

L = length of string (m) 

n = number of antinodes 

v = velocity of wave propagation (m/s) 

T = string tension (N) 

µ = linear density of string or mass per unit of string (kg/m) 

             f = frequency of wave (Hz) 

This experiment will be conducted using a Sonometer to investigate how the frequencies of 

vibrating wires vary with length, density, and tension. The driver and detector coil can be placed 

anywhere along the string. The driver coil drives string vibrations at any frequency the 

function generator will produce. The detector coil allows the vibration of the string to be 

viewed on the oscilloscope. With a dual trace oscilloscope, the phase differences between the 

driving frequency and the string vibrations can even be examined. 

 

C. PRE-LAB READING MATERIAL: Theory - Background Information 

1. Standing Wave on a Stretched String: 

Reflected wave

Incoming wave Fixed end/ 

Reflecting 

surface

 

  

 

  

 
Figure 1. Standing Wave on a Stretched String  

                                                           
1 Proof: http://hyperphysics.phy-astr.gsu.edu/hbase/waves/wavsol.html#c2 

http://hyperphysics.phy-astr.gsu.edu/hbase/waves/wavsol.html%23c2


Modified by Data Ng  Wave and Resonance 

Version 1.0  November, 2015 Laboratory Manual 

 

Laboratory Manual  Page 2 of 12  

A simple sine wave traveling along a taut string can be described by the equation

1 sin 2m
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2. If the string is fixed at one end, the wave will be reflected back 

when it strikes that end. The reflected wave will then interfere with the original wave. The 

reflected wave can be described by the equation 2 sin 2m
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amplitudes of these waves are small enough so that the elastic limit of the string is not exceeded, 

the resultant waveform will be just the sum of the two waves: 
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Using the trigonometric identity:  sin sin 2sin cos
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This equation has some interesting characteristic. At a fixed time to, the shape of the 

string is a sine wave with a maximum amplitude of 2 cos 2
2
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At a fixed position on the string xo, the string is undergoing simple harmonic motion, with an 

amplitude 2 sin 2
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there is no propagation of the waveform along the string. A time exposure of the standing 

wave would show a pattern something like the one in Figure 2. This pattern is called the 

envelope of the standing wave. Each point of the string oscillates up and down with its 

amplitude determined by the envelope. The points of maximum amplitude are called 

antinodes. The points of zero amplitude are called nodes.  
Antinode Antinode Antinode Antinode

Node Node Node  
Figure 2. The Envelope of a standing wave 

The phase of the standing wave depends on the sign of sin 2
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changed after passing through each node or antinode. 

                                                           
2 For more details: http://hyperphysics.phy-astr.gsu.edu/hbase/waves/wavsol.html#c4 

http://hyperphysics.phy-astr.gsu.edu/hbase/waves/wavsol.html%23c4
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             For a standing wave on two fixed points with effective length L, it obeys: 
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2. Resonance: 

The analysis above assumes that the standing wave is formed by the superposition of an 

original wave and one reflected wave. In fact, if the string is fixed at both ends, each wave 

will be reflected every time it reached either end of the string. In general, the multiply 

reflected waves will not all be in phase, and the amplitude of the wave pattern will be small. 

However, at certain frequencies of oscillation, all the reflected waves are in phase, resulting 

in a very high amplitude standing wave. These frequencies are called resonant frequencies. 

In this experiment, the relationship between the length of the string and the frequencies 

at which resonance occurs is investigated. It is shown that the conditions for resonance are 

more easily understood in terms of the wavelength of the wave pattern, rather than in terms of 

the frequency. In general, resonance occurs when the wavelength (L) satisfies the condition: 

2L

n
           where n is the number of antinode on the string and equal to 1, 2, 3, 4… 

Another way of stating this same relationship is to say that the length of the string is 

equal to an integral number of half wavelengths. This means that the standing wave is such that 

a node of the wave pattern exists naturally at each fixed end of the string. 

2.1. Lowest Three Resonance Frequency: 

Mode of resonance First harmonic Second harmonic Third harmonic 
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3. Velocity of Wave Propagation 

Assuming a perfectly flexible, perfectly elastic string, the velocity of wave propagation 

(v) on a stretched string depends on two variables: the mass per unit length or linear density of 

the string (μ) and the tension of the string (T). The relationship is given by the equation: 

v =
T

m  
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Without going into the derivation of this equation, its basic form can be appreciated. The 

equation is analogous to Newton’s Second law, providing a relationship between a measure 

of force, a measure of inertia, and a quantity of motion. With this analogy in mind, it makes 

sense that the velocity should depend on the tension and linear density of the string. Hence, 

the forms of the two equations are not the same is to be expected. The motion of the string is 

considerably different from the motion of a simple rigid body acted on by a single force. 

 

D. SETUP 

1. Experimental Apparatus 

Sonometer base with tensioning lever 

- Two bridges 

- 6 wires (guitar strings), two for each of the following diameters (linear densities): 

a. 0.010” (0.39g/m) 

b. 0.017” (1.12g/m) 

c. 0.022” (1.84g/m) 

- Driver/Detector Coils 

- A function generator and a power amplifier capable of delivering 0.5A into a low 

impedance load 

- An oscilloscope, preferably dual trace 

DETECTOR

WA-9613

DRIVER

WA-9613

WA-9611

SONOMETER

KEEP WEIGHTS AS NEAR TO FLOOR
AS POSSIBLE IN THE EVENT THE

SONOMETER WIRE SHOULD BREAK

CAUTION!
1.75 kg MAXIMUM
LOAD ON LEVER

Bridge String Tensioning 

lever

Sonometer base

String 

adjustment 

knob

1 kg mass
 

Figure 3. The Sonometer and Suggested Accessories 

2. Set-up 

 The experimental set up is shown in below.  
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E. EXPERIMENT 1: Resonance Modes of a Stretched String 

 

 

 

 

 

 

 

 

 

Safety Issue: Please wear the goggle glass during experiment!!!!!! 
You have to wear safety goggle glass once you conduct this experiment. It protects your eyes 

get hurt from the vibrating string. You have to bear in mind that every stretched vibrating 

string could be broken suddenly and unexpectedly.  
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Procedure 

1. Setup the Sonometer as shown in Figure 3. 
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Figure 3. Equipment setup for experiment 1 
(The exact apparatus may be different from the graph but its 

function is unchanged) 

Figure 4. Top view from 

driver coil 

 

2. Start with bridges 60cm apart. It is suggested that the left bridge should be located at 10 cm 

and the right bridge should be located at 70 cm.  

3. Use the 0.01” (0.39 g/m) strings and hang a mass of approximately 1kg from the tensioning 

lever.  

4. Adjust the string adjustment knob so that the tensioning lever is horizontal. Position the 

driver coil approximately 5cm from left bridge (i.e. located at 15 cm) and position the 

detector near the center of the wire.  

5. Record the length, tension (mg, where g is the acceleration due to gravity), and linear 

density of the string in Table 1.1 

6. Turn on the signal generator and power amplifier. 

7. Set the signal generator to produce a sine wave and set the gain of the oscilloscope to 

approximately 5mV/cm. 

8. Slowly increase the frequency of the signal to the driver coil, starting at approximately 

25Hz. Listen for an increase in the volume of the sound from the sonometer and/or an 

increase on the size of the detector signal on the oscilloscope screen. Frequencies that result 

in maximum string vibration are resonant frequencies. Determine the lowest frequency at 

which resonance occurs. This is resonance in the first, or fundamental mode. Measure this 

frequency and record it in Table 1.1. 

9. Start with the detector as close as you can get it to one of the bridges. Watch the 

oscilloscope as you slide the detector slowly along the string. Locate and record the 

locations of each node and antinode. Record your results in Table 1.1. 

10. Continue increasing the frequency to find successive resonant frequencies for first order, 

second order, third order (optional) and fourth order (optional). Record the resonance 

frequency for each mode, and the locations of nodes and antinodes in Table 1.1. 

Note: The driving frequency of the signal generator may not be the frequency at which the 

wire is vibrating. By using a dual trace oscilloscope, you can determine if the two frequencies 

Caution: Put the hanging mass carefully and slowly. Otherwise, it will break the string 

and the broken string may hurt you. 

Caution: Try with small driving power first and then increase gradually to obtain a 

reasonable resonant amplitude. Do not exceed the recommended power output or the 

driver could be damaged. 
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are the same, or if the vibrating frequency is a multiple of the driving frequency, as shown in 

Figure 5. 

Vibrating 

waveform

Driving

waveform

Oscilloscope Screen  
Figure 5. String vibrations at a multiple of the driving frequency 

11. From your results, determine and record the wavelength of each resonance pattern you 

discovered. (Note that adjacent nodes are one half wavelengths apart.) 

12. Change the string length to 40cm, repeat the measurements and record them in Table 1.2. 

13. Change the string length to 60cm. Change the string tension by hanging the weight from a 

different notch, repeat the measurements and record them in Table 1.3. 

14. Change the linear density of the string by changing using 0.017” (1.12g/m) string, repeat 

the measurements as Step 5 and record them in Table 1.4. 

 

F. EXPERIMENT 2: Velocity of Wave Propagation 

Procedure: 

1. Set up the Sonometer as shown in Figure 6. 
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Figure 6. Equipment setup 

(The exact apparatus may be different from the graph but its function is unchanged) 

 

2. Set the bridges 60cm apart. Use any of the included strings and hang a mass of 

approximately 1kg form the tensioning lever. (It is suggested to start a string with heaviest 

linear density first) 

3. Adjust the string adjustment knob so that the tensioning lever is horizontal. Position the 

driver coil approximately 5cm from one of the bridges and position the detector near the 

center of the wire. 

4. Set the signal generator to produce a sine wave and set the gain of the oscilloscope to 

approximately 5mV/cm. 

5. Slowly increase the frequency of the signal driving the driver coil, starting with a frequency 

of around 25Hz. Determine the lowest frequency at which resonance occurs. Record this 

value in Table 2.1. 

Caution: Try with small driving power first and then increase gradually to obtain a    
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6. Repeat the above steps for two other different notches (different tension). 

The tension is determined as shown in Figure 7. Just multiply the weight of the hanging 

mass by one, two, three, four or five, depending on which notch of the tensioning lever the 

mass is hanging from. The linear densities of the strings are given in the first page. 

String 

tension (T)

1 

mg

Hanging 

Mass

Mass = m

Weight = mg

2 

mg

3 

mg

4 

mg

5 

mg  
Figure 7. Setting the tension 

7. Repeat the above steps by using two other different strings. 

To be sure you have found the lowest resonance frequency, slide the detector coil of the string. 

The wave pattern should have just a single antinode located midway between the two bridges. 

 

  

reasonable resonant amplitude. Do not exceed the recommended power output or the driver 

could be damaged. 
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G. DATA COLLECTION: 

Table 1.1 

Length: ________m   Tension: _______N  Linear density: _______ __g/m = ________ kg / 

m 

 

 Resonant frequency (Hz) Location of node (m) Location of antinode (m) Wavelength (m) 

First 

order 

 

 
   

Second 

order 

 

 
   

Third 

order 

 

 
   

Table 1.2 

Length: ________m   Tension: _______N  Linear density: _______ __g/m = ________ kg / 

m 

 

 Resonant frequency (Hz) Location of node (m) Location of antinode (m) Wavelength (m) 

First 

order 

 

 
   

Second 

order 

 

 
   

Third 

order 

 

 
   

Table 1.3 

Length: ________m   Tension: _______N  Linear density: _______ __g/m = ________ kg / 

m 

 Resonant frequency (Hz) Location of node (m) Location of antinode (m) Wavelength (m) 

First 

order 

 

 
   

Second 

order 

 

 
   

Third 

order 

 

 
   

Table 1.4 

Length: ________m   Tension: _______N  Linear density: _______ __g/m = ________ kg / 

m 

 Resonant frequency (Hz) Location of node (m) Location of antinode (m) Wavelength (m) 

First 

order 

 

 
   

Second 

order 

 

 
   

Third 

order 
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H. DISCUSSION QUESTIONS: 

Answer the following questions in your report. 

Analysis for Experiment 1 - Resonance Modes of a Stretched String 

1. String length: 

Using your data, determine the shape of the successive resonance waveforms as the 

frequency is increased. How do the wave shapes depend on the length of the string? Sketch 

the resonance waveforms for an arbitrary string length. What relationship holds between 

the wavelength of the wave and the string length when resonance occurs? Can you state 

this relationship mathematically? 

 

For each string length, inspect the frequencies at which resonance occurred. Determine 

a mathematical relationship between the lowest resonant frequency (the fundamental 

frequency) and the higher frequencies (overtones) at which resonance occurred. 

 

2. String tension: 

Do the frequencies at which resonance occurs depend on the tension of the wire? Do the 

shapes of the resonance patterns (locations of nodes and antinodes) depend on the tension 

of the wire? 

 

3. String density: 

Do the frequencies at which resonance occurs depend on the linear density of the wire? Do 

the shapes of the resonance patterns (locations of nodes and antinodes) depend on the linear 

of the wire? 

 

Analysis for Experiment 2 - Velocity of Wave Propagation 

 

4. Table 2.1 

 

Length: _________m  

 

 

Tension (N) Linear density (g/m) Lowest resonance frequency (Hz) Velocity (m/s) 

    

    

    

    

    

    

    

    

    

 

5. Use your measured string length, the fundamental frequency, and the equation fv   to 

determine the velocity of the wave on the string for each value of tension and linear density 

that you used and record it in Table 2.1. 
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6. Determine the functional relationship between the speed of the wave (v) and the wire 

tension (T).  

 

7. Determine the functional relationship of the speed of the wave (v) to the linear density of 

the string (µ). 

 

8. Use your answer to question 1, and the expression fv  , to determine the resonant 

frequencies of a wire of length L. 

 

9. Use your experimental results to write an expression for the resonant frequencies of a 

vibrating wire in terms of T, µ and L. 
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Applications of Stationary Wave and Resonance: 

 

The frequencies produced by stretched strings are determined by the tension, mass and 

length of the strings, and consist of a fundamental frequency and all harmonics of that 

fundamental. Even though these frequencies are determined, the timbre of the sound 

produced by the string can vary considerably depending upon the method of excitation of 

the string. In the violin family the string may be bowed or plucked (pizzicato). In the piano 

the string is struck by a felt hammer, and in the harpsichord the strings are plucked by a 

"quill". 

 

Even when the form of excitation is established, there are differences in harmonic content 

depending upon the location of excitation on the string. If a violin is bowed close to the 

bridge (sul ponticello) then the sound is brighter with more harmonic content. If bowed 

further from the bridge (sul tasto) then the sound is darker, more mellow with less 

harmonic content. 
 

Air Resonance and the f-holes 
The f-holes of a violin form the opening of a cavity resonator which in the resonance curve for the 

Stradivarius shown enhances frequencies close to the open string D4 at 294 Hz. 
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J. APPENDIX: 

Derivation of wave equation of transverse wave on a stretched string: 

As shown in the figure, the transverse displacement is  ,u x t and we will assume that this 

displacement is small.  

T T

 



T

x xx
x

u

2

2

u
x

x






  
 

Equations of motion: 

Horizontal direction:  

   cos cosT T T       

And small displacement u  cos 1   

Giving T T T   

i.e. 0T  , constantT   

Vertical direction: 

   sin sin yT T T ma        

0T   and sin   
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2
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

 
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              tan
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x
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
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The wave equation is  
2 2

2

2 2

u u
v

t x

 


 
 

     where speed of wave is 
T

v


 .  


