NE05 - LRC Series Circuit

□ PHYS1050 / □ PHYS1250

Ref. (Staff Use)____

Pre-Laboratory Worksheet Experiment NE05 - LRC Series Circuit Department of Physics The University of Hong Kong

Name:	Student ID:	Date:		
Remark: Please submit Pre-Laboratory Worksheet to laboratory technician when you arrive the laboratory				

Background information:

1. In laboratory manual, if $X_L > X_C$, the total impendence Z_{Total} and phase difference ϕ between applied potential difference and current of a LRC circuit are derived. If $X_L < X_C$, what is the total impendence Z_{Total} and phase difference ϕ between applied potential difference V_S and current *i* of a LRC circuit? (Hints: Consider the phase relationships among reference Phasor *i*, V_C , V_L , V_R and V_S and make use of the Phasor diagram; Also, if $X_L < X_C$, then , $V_L < V_C$)

Reference Phasor

2. What the root-mean-squared voltage of a sinusoidal a.c. supply ? (Hints: $P = \frac{V^2}{R}$)

Version. 1.0

3. Complete the following table about the pure resistive, pure capacitive and pure inductive circuit ? (Hints: Read Page 5 – Page 13 in lab manual)

	R	С	L	
Circuit				
Impendence, Z				
Phase difference with <i>i</i>				
Phasor diagram				

4. Calculate the theoretical value of the resonant frequency, phase angle capacitive reactance and inductive reactance of the setup in experiment 1.

Resonant frequency	Capacitive reactance	Inductive reactance

Phase angle

5. By considering equation (75) and $\omega = 2\pi f$, find out the expression resonant angular frequency