Background information:

1. In laboratory manual, if $X_{L}>X_{C}$, the total impendence $Z_{\text {Total }}$ and phase difference ϕ between applied potential difference and current of a LRC circuit are derived. If $X_{L}<X_{C}$, what is the total impendence $Z_{\text {Total }}$ and phase difference ϕ between applied potential difference V_{S} and current i of a LRC circuit? (Hints: Consider the phase relationships among reference Phasor i, V_{C}, V_{L}, V_{R} and V_{S} and make use of the Phasor diagram; Also, if $X_{L}<X_{C}$, then, $V_{L}<V_{C}$)
2. What the root-mean-squared voltage of a sinusoidal a.c. supply? (Hints: $P=\frac{V^{2}}{R}$)
3. Complete the following table about the pure resistive, pure capacitive and pure inductive circuit?
(Hints: Read Page 5 - Page 13 in lab manual)

	R	C	L
Circuit			
Impendence, Z			
Phase difference with i			
Phasor diagram			

4. Calculate the theoretical value of the resonant frequency, phase angle capacitive reactance and inductive reactance of the setup in experiment 1.

Resonant frequency	Capacitive reactance	Inductive reactance

Phase angle
5. By considering equation (75) and $\omega=2 \pi f$, find out the expression resonant angular frequency

