THE UNIVERSITY OF HONG KONG
 Department of Physics

PHYS2261 Introductory heat and thermodynamics
 Laboratory report 2261-1:
 Adiabatic gas

1 Ideal gas law

Equipment required:

Adiabatic gas law apparatus

Purpose:

To show that $\frac{P V}{T}=n R$ for an ideal gas and determine the value of R.

Theory:

The ideal gas law is the equation of state of an ideal gas. The well-known relationship between pressure, volume and temperature of an ideal gas is

$$
P V=n R T .
$$

For a closed system with n fixed, placing all variables on the left-hand side of the equation yields a constant, i.e.

$$
\frac{P V}{T}=n R .
$$

Setup:

A. Connections:

1. The Adiabatic gas law apparatus should have already been connected to Science Workshop 500 interface: the pressure, volume and temperature din connectors are inserted into analog channels A, B and C of the interface, respectively.
2. Open Capstone on the computer. Indicate that a voltage sensor is connected to each channel in the Hardware Setup. Adjust the common sample rate to 1000 Hz .
3. In the Calculator tool, click New and define the pressure according to the linear calibartion expression on the label on the side of the Adiabatic gas law apparatus. Provide the unit also.
4. Do the same for volume and temperature.

B. Graphical display:

1. Drag and drop the Graph icon from the display menu onto the page. On the y-axis, select measurement to be pressure that is defined under the equations/constants label. Select time in second for the x-axis.
2. Repeat for volume and temperature. In this way, graphs of pressure, volume and temperature will all be displayed with a common time axis.

Procedure:

1. With a stopcock valve open, set the piston to the approximate middle of its range at the 10 cm mark and close both stopcocks.
2. Record the height of the piston at atmospheric pressure.
3. Raise the piston to its highest position, click on Record and over a space of approximately five seconds, slowly and steadily move the piston to its lowest position, then click Stop. Notice that the graphs plotted show the pressure increasing as the volume decreases.

Analysis:

A. Conversions from voltages to P, V and T

1. Use the Calculator to define $n R=P V / T$ and choose Properties to ensure that the numeric display shows at least three significant figures. Plot a graph of $n R$ by selecting the appropriate title on the vertical axis.
2. Use the \sum icon on the Graph menu to display the mean value of $n R$ as well as the standard deviation.
3. Record the mean value and also the standard deviation of $n R$. Estimate the random error associated with the experiment.

B. Number of moles n

1. Calculate the volume of air in cm^{3} at the initial 10 cm height when the stopcock was opened to the atmosphere using $V_{0}=\pi r^{2} h_{0}$.
2. Calculate the number of moles of gas with density of air at standard temperature and pressure (STP) of $\rho=0.00129 \mathrm{~g} \mathrm{~cm}^{-3}$, the volume V_{0} and the molecular weight of air.
3. Compute your measured value of R.
4. Compare your measurement with the generally accepted value of R.

2 Adiabatic gas law

Equipment required:

Adiabatic gas law apparatus, helium or argon gas and carbon dioxide gas.

Purpose:

To observe the adiabatic gas law $P V^{\gamma}=$ constant and measure the ratio of specific heats γ for different gases.

Theory:

When a process occurs quickly enough that no heat is exchanged with the environment, the process is called "adiabatic". For such process, the relation between pressure and volume is given by

$$
P V^{\gamma}=\mathrm{constant},
$$

where γ is the ratio of specific heats at cosntant pressure and constant volume, i.e. $\gamma=C_{p} / C_{v}$. A measurement of γ can reveal important physical information about the structure of gas molecules. The equipartition theorem tells us that the molar specific heat at constant volume C_{v} is related to the number of degress of freedom f available to each molecule through the relation

$$
C_{v}=\frac{f}{2} R
$$

where $f=3$ for a monatomic gas with three translational directions in motion and $f=5$ for a diatomic gas with three translational plus two rotational contributions to the internal energy.

The specific heat at constant pressure C_{p} is related to the specific heat at constant volume by

$$
C_{P}=C_{V}+R
$$

Experimentally, you will determine γ by observing the relation between pressure and volume. Since we have

$$
\ln P=-\gamma \ln V+b
$$

for some constant b, we expect that a plot of $\ln P$ versus $\ln V$ should be a straight line of slope $-\gamma$.

Procedure:

1. With a stopcock valve open, set the piston to the approximate middle of its range at the 10 cm mark and close both stopcocks.
2. Raise the piston to its highest position, click on Record and quickly move the piston to its lowest postion, then click Stop. The gas should be compressed as rapidly as possible to make the experiment approximately adiabatic.

Procedure:

1. Use the Calculator to compute $\ln P$ and $\ln V$. Make a graph of $\ln P$ versus $\ln V$. Perform linear fit and record the slope. Compare your result against 1.40, the theoretical value for air.
2. Repeat the experiment using carbon dioxide as well as helium or argon.

3 Work done by an adiabatic process

Equipment required:

Adiabatic gas law apparatus,.

Purpose:

To observe that the work performed on a gas is given by $W=\int P d V$, i.e. the area under a $P-V$ curve.

Theory:

When a gas is compressed under constant pressure, the work performed on the system is simply the product of force times displacement:

$$
\begin{gathered}
W=-F \Delta y=-P A \Delta y=-P \\
--- \text { - END OF LABORATORY SESSION -- - }
\end{gathered}
$$

Discussion

A few questions have been listed below for you to ponder:

- Based on the results in Task 2, discuss about Greenhouse Effect.
- Inverse-square law is derived by assuming point source. Apparently, the Stefan-Boltzmann lamp we are using in Task 3 is not a point source. Discuss how would this affect the result.

Discuss them in your report under the "Discussion" section. Feel free to include more constructive comments.

