THE UNIVERSITY OF HONG KONG Department of Physics

PHYS2261 Introductory heat and thermodynamics Laboratory report 2261-1: Adiabatic gas

1 Ideal gas law

Equipment required:

Adiabatic gas law apparatus

Purpose:

To show that $\frac{PV}{T} = nR$ for an ideal gas and determine the value of R.

Theory:

The ideal gas law is the equation of state of an ideal gas. The well-known relationship between pressure, volume and temperature of an ideal gas is

$$PV = nRT$$
.

For a closed system with n fixed, placing all variables on the left-hand side of the equation yields a constant, i.e.

$$\frac{PV}{T} = nR$$

Setup:

A. Connections:

- 1. The Adiabatic gas law apparatus should have already been connected to *Science Workshop* 500 interface: the pressure, volume and temperature din connectors are inserted into analog channels A, B and C of the interface, respectively.
- 2. Open *Capstone* on the computer. Indicate that a voltage sensor is connected to each channel in the *Hardware Setup*. Adjust the common sample rate to 1000 Hz.
- 3. In the Calculator tool, click *New* and define the pressure according to the linear calibartion expression on the label on the side of the Adiabatic gas law apparatus. Provide the unit also.
- 4. Do the same for volume and temperature.

B. Graphical display:

- 1. Drag and drop the *Graph* icon from the display menu onto the page. On the *y*-axis, select measurement to be pressure that is defined under the equations/constants label. Select time in second for the *x*-axis.
- 2. Repeat for volume and temperature. In this way, graphs of pressure, volume and temperature will all be displayed with a common time axis.

Procedure:

- 1. With a stopcock valve open, set the piston to the approximate middle of its range at the $10 \,\mathrm{cm}$ mark and close both stopcocks.
- 2. Record the height of the piston at atmospheric pressure.

3. Raise the piston to its highest position, click on *Record* and over a space of approximately five seconds, slowly and steadily move the piston to its lowest position, then click *Stop*. Notice that the graphs plotted show the pressure increasing as the volume decreases.

Analysis:

A. Conversions from voltages to P, V and T

- 1. Use the *Calculator* to define nR = PV/T and choose *Properties* to ensure that the numeric display shows at least three significant figures. Plot a graph of nR by selecting the appropriate title on the vertical axis.
- 2. Use the \sum icon on the *Graph* menu to display the mean value of nR as well as the standard deviation.
- 3. Record the mean value and also the standard deviation of nR. Estimate the random error associated with the experiment.

B. Number of moles *n*

- 1. Calculate the volume of air in cm³ at the initial 10 cm height when the stopcock was opened to the atmosphere using $V_0 = \pi r^2 h_0$.
- 2. Calculate the number of moles of gas with density of air at standard temperature and pressure (STP) of $\rho = 0.001 \, 29 \, \text{g cm}^{-3}$, the volume V_0 and the molecular weight of air.
- 3. Compute your measured value of R.
- 4. Compare your measurement with the generally accepted value of R.

2 Adiabatic gas law

Equipment required:

Adiabatic gas law apparatus, helium or argon gas and carbon dioxide gas.

Purpose:

To observe the adiabatic gas law $PV^{\gamma} = \text{constant}$ and measure the ratio of specific heats γ for different gases.

Theory:

When a process occurs quickly enough that no heat is exchanged with the environment, the process is called "adiabatic". For such process, the relation between pressure and volume is given by

$$PV^{\gamma} = \text{constant} ,$$

where γ is the ratio of specific heats at cosntant pressure and constant volume, i.e. $\gamma = C_p/C_v$. A measurement of γ can reveal important physical information about the structure of gas molecules. The equipartition theorem tells us that the molar specific heat at constant volume C_v is related to the number of degress of freedom f available to each molecule through the relation

$$C_v = \frac{f}{2}R \,,$$

where f = 3 for a monatomic gas with three translational directions in motion and f = 5 for a diatomic gas with three translational plus two rotational contributions to the internal energy.

The specific heat at constant pressure C_p is related to the specific heat at constant volume by

$$C_P = C_V + R \; .$$

Experimentally, you will determine γ by observing the relation between pressure and volume. Since we have

$$\ln P = -\gamma \ln V + b$$

for some constant b, we expect that a plot of $\ln P$ versus $\ln V$ should be a straight line of slope $-\gamma$.

Procedure:

- 1. With a stopcock valve open, set the piston to the approximate middle of its range at the $10 \,\mathrm{cm}$ mark and close both stopcocks.
- 2. Raise the piston to its highest position, click on *Record* and quickly move the piston to its lowest postion, then click *Stop*. The gas should be compressed as rapidly as possible to make the experiment approximately adiabatic.

Procedure:

- 1. Use the *Calculator* to compute $\ln P$ and $\ln V$. Make a graph of $\ln P$ versus $\ln V$. Perform linear fit and record the slope. Compare your result against 1.40, the theoretical value for air.
- 2. Repeat the experiment using carbon dioxide as well as helium or argon.

3 Work done by an adiabatic process

Equipment required:

Adiabatic gas law apparatus,.

Purpose:

To observe that the work performed on a gas is given by $W = \int P \, dV$, i.e. the area under a P-V curve.

Theory:

When a gas is compressed under constant pressure, the work performed on the system is simply the product of force times displacement:

$$W = -F\Delta y = -PA\Delta y = -P$$

---- END OF LABORATORY SESSION ----

Discussion

A few questions have been listed below for you to ponder:

- Based on the results in Task 2, discuss about Greenhouse Effect.
- Inverse-square law is derived by assuming point source. Apparently, the Stefan-Boltzmann lamp we are using in Task 3 is not a point source. Discuss how would this affect the result.

Discuss them in your report under the "Discussion" section. Feel free to include more constructive comments.