THE UNIVERSITY OF HONG KONG

Department of Physics

PHYS2261 Introductory heat and thermodynamics

Laboratory report 2261-1:

Adiabatic gas law

	Student No.:
	Date:
Part A. Ideal Gas Law	
Record the Initial height of the piston at at	mospheric pressure: $h_0 = $ cm
Mean value of $nR = $ J/K	
Standard deviation of $nR = $	J/K
% Random error = $100 \cdot \frac{Standard deviation}{Mean}$	= %
Initial volume of air: $V_0 = \pi r^2 h_0 = \lambda$	cm ³
Number of moles of gas: $n = \frac{\rho_{air}V_0}{M_{air}} = $	mol
Compute your measure value of $R:R_n$	$_{nean} = \frac{n R_{mean}}{n} = $ J/mol · K
Compare your measure with the generally	accepted value of $R=8.314$ J/mol · K:
% Error = $\frac{ R_{mean} - 8.314 }{8.314} \times 100 = $	%
Please attach graphs of $\ P$, $\ V$, $\ T$ a	nd <i>nR</i> vs time.
Part B. Adiabatic Gas Law	
Gas used: air	
Slope of the graph of $\ln{(P)}$ vs $\ln{(V)}$	=
Ratio of specific heats measured $\gamma = $	
Compare your measured γ with 1.40: %	Error = %
Please attach graph of $\ln{(P)}$ vs $\ln{(V)}$	

Gas used: Helium / Argon (Circle the one you used) Slope of the graph of $\ln (P)$ vs $\ln (V) =$ Ratio of specific heats measured $\gamma =$ _____ Compare your measured y with 1.67: % Error = _____ % Please attach graph of $\ln |P|$ vs $\ln |V|$. Gas used: Carbon Dioxide Slope of the graph of $\ln |P|$ vs $\ln |V|$ = Ratio of specific heats measured y =_____ Compare your measured γ with 1.30: % Error = % Please attach graph of $\ln (P)$ vs $\ln (V)$. Part C. Work Done by an Adiabatic Process Record the Initial height of the piston at atmospheric pressure: $h_0 =$ _____ cm Record the minimum and maximum temperature and compute the change in temperature: $T_{\it min}=$ _____ K $T_{\it max}=$ _____ K $\Delta T=$ _____ K Initial volume of air: $V_0=\pi\,r^2\,h_0=$ i _____ cm³ Number of moles of gas: $n = \frac{\rho_{air}V_0}{M_{circ}} = \underline{\qquad}$ mol Compare the change in internal energy with the area under the P vs V curve: % Difference = $\frac{|\Delta U - area|}{area} \times 100 =$ ______% Theoretical prediction of work done: Compare the area under the curve with the theoretical prediction: % Difference = $\frac{\left|W_{experimental} - W_{theoretical}\right|}{W_{theoretical}} \times 100 = \underline{\qquad} \%$

Please attach graphs of P , V , T vs time and P vs V .