THE UNIVERSITY OF HONG KONG

Department of Physics

PHYS2261 Introductory heat and thermodynamics
Laboratory report 2261-1:
Adiabatic gas law

Student
Name: \qquad
Group
No.: \qquad

Part A. Ideal Gas Law

Record the Initial height of the piston at atmospheric pressure: $h_{0}=$ \qquad cm

Mean value of $n R=$ \qquad J/K

Standard deviation of $n R=$ \qquad J/K
$\%$ Random error $=100 \cdot \frac{\text { Standard deviation }}{\text { Mean }}=$ \qquad \%

Initial volume of air: $\quad V_{0}=\pi r^{2} h_{0}=i$ \qquad cm^{3}

Number of moles of gas: $n=\frac{\rho_{\text {air }} V_{0}}{M_{\text {air }}}=$ \qquad mol

Compute your measure value of $R: \quad R_{\text {mean }}=\frac{n R_{\text {mean }}}{n}=\ldots \mathrm{J} / \mathrm{mol} \cdot \mathrm{K}$
Compare your measure with the generally accepted value of $R=8.314 \mathrm{~J} / \mathrm{mol} \cdot \mathrm{K}$:
\% Error $=\frac{\left|R_{\text {mean }}-8.314\right|}{8.314} \times 100=$ \qquad \%

Please attach graphs of P, V, T and $n R$ vs time.

Part B. Adiabatic Gas Law

Gas used: air
Slope of the graph of $\ln (P)$ vs $\ln (V)=$ \qquad
Ratio of specific heats measured $\gamma=$ \qquad
Compare your measured $\quad \gamma$ with 1.40: \% Error = \qquad \%

Please attach graph of $\ln (P)$ vs $\ln (V)$.

Gas used: Helium / Argon (Circle the one you used)
Slope of the graph of $\ln (P)$ vs $\ln (V)=$ \qquad
Ratio of specific heats measured $\gamma=$ \qquad
Compare your measured $\quad \gamma$ with 1.67: \% Error = \qquad \%
Please attach graph of $\ln (P)$ vs $\ln (V)$.

Gas used: Carbon Dioxide
Slope of the graph of $\ln (P)$ vs $\ln (V)=$ \qquad
Ratio of specific heats measured
$\gamma=$ \qquad
Compare your measured γ with 1.30: \% Error = \qquad \% Please attach graph of $\ln (P)$ vs $\ln (V)$.

Part C. Work Done by an Adiabatic Process

Record the Initial height of the piston at atmospheric pressure: $h_{0}=$ \qquad cm
Record the area under the P vs V curve: Area $=W_{\text {experimental }}=\square \quad \mathrm{J}$
Record the minimum and maximum temperature and compute the change in temperature:

Number of moles of gas: $n=\frac{\rho_{\text {air }} V_{0}}{M_{\text {air }}}=$ \qquad mol

Compute the change in internal energy of the air: $\Delta U=\frac{5}{2} n R \Delta T=$ \qquad J

Compare the change in internal energy with the area under the P vs V curve:
$\%$ Difference $=\frac{\mid \Delta U-\text { area } \mid}{\text { area }} \times 100=$ \qquad \%

Theoretical prediction of work done:
Initial Volume $V_{i}=\ldots \mathrm{m}^{3}$
Initial Pressure $P_{i}=\square \mathrm{Pa}$
Final Volume $V_{f}=$ \qquad m^{3}

Theoretical work done $(\gamma=1.40)=W_{\text {theoretical }}=$ \qquad J
Compare the area under the curve with the theoretical prediction:
\% Difference $=\frac{\left|W_{\text {experimental }}-W_{\text {theoretical }}\right|}{W_{\text {theoretical }}} \times 100=$ \qquad
Please attach graphs of P, V, T vs time and P vs V.

