PHYS2627/PHYS2265 Introductory quantum physics

2265-1LABORATORYREPORT

Experiment 1: Experiments of Thermal Radiation

Student Name:	Student No.:			
Group No.:		Date:		
A.Radiation Rates fro	m Different Surfaces			
Power Setting 5.0	ower Setting 5.0 Power Setting 6.5			
Thermister resistance Ω Thermister resistance			Ω	
Temperature	°C	Temperature	°C	
Surface	Sensor Reading(mV)	Surface	Sensor Reading(mV)	
Black		Black		
White		White		
Polished Aluminum		Polished Aluminum		
Dull Aluminum		Dull Aluminum		
Power Setting 8.0		Power Setting 10.0		
Thermister resistance_	Ω Thermister resistance $Ω$			
Temperature	°C	Temperature	°C	

Surface	Sensor Reading(mV)	Surface	Sensor Reading(mV)
Black		Black	
White		White	
Polished Aluminum		Polished Aluminum	
Dull Aluminum		Dull Aluminum	

B. Absorption and Transmission of the Thermal Radiation

\sim		
1 111	Acti.	and
νu	esti	OHE

Questions
1. What do your results suggest about the phenomenon of heat loss through
windows?
2. What do your results suggest about the Greenhouse Effect?

C.Inverse Square Law

Table 2.1 Ambient Radiation Level

X(cm)	Ambient Radiation Level (mV)
10	
20	
30	
40	
50	
60	
70	
80	
90	
100	

Average Ambient Radiation Level =	
-----------------------------------	--

Table 2.2

X (cm)	Rad. (mV)	$1/X^{2}$ (cm ⁻²)	Rad. – Ambient Rad. (mV)
2.5			
3.0			
3.5			
4.0			
4.5			
5.0			
6.0			
7.0			
8.0			
9.0			
10			
12			
14			
16			
18			
20			
25			
30			
35			
40			
45			
50			
60			
70			
80			
90			

Questions

1. Which of the two graphs is not linear? Is it linear over the entire range of
measurements?

tefan -]	Boltzmann Law	(Low Tempe	erature)		
m temp	perature: r _{rm} =_		Ω		
	$T_{rm} =$		<u>°C</u>	=	<u>K</u>
le 3.1					
R	Rad. (mV)	$T(^{\circ}\!C)$	$T_k(K)$	$T_k^4(K^4)$	$T_k^4 - T_{rm}^4 (K^4)$
				1	

Questions
1. What does your graph indicate about the Stefan - Boltzmann Law at low temperature?
2. Is your graph a straight line? Discuss any deviations that exist.