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Abstract. Control of electron spin decoherence in contact with a mesoscopic
bath of many interacting nuclear spins in an InAs quantum dot is studied
by solving the coupled quantum dynamics. The nuclear spin bath, because
of its bifurcated evolution predicated on the electron spin up or down state,
measures the which-state information of the electron spin and hence diminishes
its coherence. The many-body dynamics of the nuclear spin bath is solved with
a pair-correlation approximation. In the relevant timescale, nuclear pair-wise
flip–flops, as elementary excitations in the mesoscopic bath, can be mapped
into the precession of non-interacting pseudo-spins. Such mapping provides a
geometrical picture for understanding the decoherence and for devising control
schemes. A close examination of nuclear bath dynamics reveals a wealth of
phenomena and new possibilities of controlling the electron spin decoherence.
For example, when the electron spin is flipped by a π-pulse at τ, its coherence will
partially recover at

√
2τ as a consequence of quantum disentanglement from the

mesoscopic bath. In contrast to the re-focusing of inhomogeneously broadened
phases by conventional spin-echoes, the disentanglement is realized through
shepherding quantum evolution of the bath state via control of the quantum object.
A concatenated construction of pulse sequences can eliminate the decoherence
with arbitrary accuracy, with the nuclear–nuclear spin interaction strength acting
as the controlling small parameter.
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1. Introduction

A quantum system, unlike a classical one, can be in a coherent superposition of constituent
states. This coherence is the wellspring of quantum properties and is key to quantum technology.
The contact of a quantum object with a macroscopic system causes loss of state coherence
[1]–[3]. Advances towards quantum technology have effectively substituted the macroscopic
environments by mesoscopic ones. Usually, the contact interaction between the quantum object
and a ‘particle’of the bath weakens with increasing bath size (defined by the number of particles,
N), while the interaction between particles inside the bath is independent of the bath size. When
the bath size is in the mesoscopic regime such that the object–bath interaction dominates their
interaction with the rest of universe, the quantum object and the mesoscopic bath evolve as a
closed system in the relevant timescales. Thus, a proper description of the quantum object in such
a mesoscopic bath is given by the full quantum mechanical solution of the coupled object–bath
evolution [4]–[9], as opposed to the semiclassical treatment in conventional decoherence studies
[10, 11].

Spins of single electrons confined in semiconductor quantum dots (QDs) are paradigmatic
systems in mesoscopic physics [12, 13] and in spin-based quantum technology [14]–[16]. Spin
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decoherence is a main limiting factor to quantum properties and has been extensively studied
both in theories [4]–[9], [17]–[30], and in experiments [31]–[41]. It has been well established
by theories [27]–[30] and experiments [31]–[34] that the electron spin decoherence caused by
phonon scattering is negligible at a temperature lower than a few Kelvin. The relevant bath
at low temperature then is a spin bath [42] composed of lattice nuclear spins in a QD. The
electron spin is coupled to a nuclear spin through the contact hyperfine interaction with magnitude
inversely proportional to the total number N of nuclei in the QD. For the QD size of interest,
the hyperfine coupling is much stronger than the mutual interaction between nuclear spins.
Therefore, a mesoscopic bath consisting of all nuclear spins within the QD (i.e. in direct contact
with the electron) is identified. Electron spin decoherence at low temperatures is determined by
the quantum dynamics of the mesoscopic spin system.

Conventionally, the relaxation of spin coherence (or spin polarization) is categorized into
two types, namely, the T1 (longitudinal) relaxation and the T2 (transverse) relaxation. Regarding
the density matrix in the basis of the energy eigenstates, the T1 process causes the redistribution
of diagonal elements accompanied by the decay of off-diagonal ones, and the T2 process causes
the decay of off-diagonal elements. In ensemble measurements, the static random distribution
of external fields (i.e. inhomogeneous broadening) also leads to an effective dephasing or T ∗

2
process. In [2], the T ∗

2 process is called ‘fake’ decoherence as it results from the classical phase
average, the dephasing in the T1 process is called ‘false’ decoherence as it is due to the spin
population redistribution, and only the T2 process excluding the effect accompanying the spin
flip (often called pure dephasing) is dubbed the ‘true’ decoherence since essentially it originates
from quantum entanglement between the system and the bath. In the specific electron–nuclear
spin system considered here, the T ∗

2 process is due to the thermal distribution of the Overhauser
field from the nuclear spins [17, 21]. The T1 process is due to the off-diagonal hyperfine interaction
[17, 21, 24, 27]. The T2 process is because of the electron–nuclear spin entanglement established
during the nuclear spin evolution driven by the hyperfine interaction and the nuclear–nuclear
spin interaction [43]. As the hyperfine interaction is the strongest part of the spin interaction
in a QD, initial theoretical efforts have been devoted to the spin decoherence by the hyperfine
interaction only where the (intrinsic) nuclear–nuclear spin interaction is neglected [17]–[24].
Such theories are successful in understanding many essential parts of the spin decoherence in
QDs, especially the T ∗

2 and T1 processes. But there are important situations under which we have
to take into account the intrinsic nuclear–nuclear spin interaction (the term ‘intrinsic’ is used to
contrast the ‘extrinsic’ interaction between nuclei mediated by the hyperfine interaction). Firstly,
under a moderate to strong magnetic field (B � 0.1 T), the Zeeman energy mismatch between
the electron and the nuclei will suppress the spin relaxation effect of the hyperfine interaction
(including both T1 and T2 processes) [4, 21, 22, 24] and hence the nuclear–nuclear spin interaction
emerges to be important. Secondly and more importantly, it has been shown that the leading
order effect of the hyperfine interaction in the dephasing is removed by a spin echo [4, 23] and
thus spin echo signals would not be correctly accounted for without considering the intrinsic
interaction. The pure dephasing effect of the intrinsic nuclear spin interaction in QD was first
studied in a semiclassical framework [25, 26] which gives correct timescales of the decoherence
but misses several important features such as the exponential index of the decay profile (especially
in the pulse control configurations [44]). Recently, quantum theories including the intrinsic
interaction have been developed independently by the Das Sarma group [7]–[9] and the Sham
group [4]–[6]. The two theories agree with each other in the lowest level of approximation (i.e. the
pair-correlation approximation as discussed below). The Sham group’s linked cluster expansion
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method [6] provides a systematic method to include the higher-order correlations order by order,
which does not agree completely with the density matrix cluster expansion theory by the Das
Sarma group [9]. We focus on the T2 decoherence caused by the electron–nuclear entanglement
in which the nuclear–nuclear spin interaction is essential. To separate the quantum entanglement
effect from the trivial ‘fake’ decoherence by the T ∗

2 process, we have examined the decoherence
in single-system dynamics before taking the ensemble average [4, 5]. The study of the single-
system dynamics reveals a wealth of important effects [4, 5] which were missing in the density
matrix cluster expansion theory [7, 8] where with inhomogeneous broadening only the spin echo
signals are of interest. For example, we found that unless the external field is very strong, the
off-diagonal hyperfine interaction has significant effect on the T2 decoherence in free-induction
decay (FID) even though its effect is virtually removed from the spin echo signals [4]. Thus
the spin echo decay time is substantially different from the FID time with the inhomogeneous
broadening effect excluded. Moreover, we discovered a recovery of the lost spin coherence by
disentanglement at times away from the spin echo [5]. The concept of disentanglement led us
naturally to a systematic scheme of using pulse sequences to preserve the spin coherence, of which
the Carr–Purcell sequence, studied also by the Das Sarma group [8], is a special example. In this
paper, we will try to give a comprehensive account of our quantum theory on the T2 problem,
taking into account both the hyperfine interaction and the intrinsic nuclear spin interaction.

Under the condition of intermediate to strong field, the Hamiltonian of the electron–nuclear
spin system is reduced to the form Ĥ = ∑

± |±〉Ĥ±〈±| which is diagonal in the electron spin
eigenstate basis {|±〉}, where Ĥ± are the nuclear bath Hamiltonians depending on the electron spin
states. The entanglement picture for the pure dephasing (T2 decoherence) of the electron spin [43]
is depicted as follows. Let the electron–nuclear spin system start from a product (i.e. unentangled)
state, (C+|+〉 + C−|−〉) ⊗|J 〉. The nuclear spin state |J 〉 would be driven by the Hamiltonians
Ĥ± to the states |J ±(t)〉 corresponding to the electron states |±〉, respectively. Thus the electron–
nuclear spins would evolve into an entangled state, C+|+〉⊗|J +(t)〉 + C−|−〉⊗|J −(t)〉. The off-
diagonal element of the reduced density matrix of the electron spin ρe

+,−(t) = C∗
−C+

〈
J −(t)|J +(t)

〉
measures the electron spin coherence. Therefore, the bifurcated evolution of the nuclear bath
leads to the loss of electron spin coherence. From the viewpoint of quantum measurement, the
electron spin states are registered by different nuclear bath states and a measured quantum object
sustains no coherence in the measurement basis [45, 46].

Within the timescale when the irreversible leakage of the quantum coherence of a mesoscopic
bath into the macroscopic environment is negligible, it is still possible to control the mesoscopic
bath dynamics [47] and hence the decoherence of the quantum object embedded in the bath
[5]. As illustrated in figure 1, the bath evolution pathways in the Hilbert space corresponding to
opposite electron spin states will exchange their evolution directions when the electron spin is
flipped:

(C+|+〉 + C−|−〉) ⊗|J 〉
−→ C+|+〉⊗|J +(t)〉 + C−|−〉⊗|J −(t)〉
−→ C+|−〉⊗|J +(t′)〉 + C−|+〉⊗|J −(t′)〉.

Thereafter, the two bath pathways |J +(t′)〉 and |J −(t′)〉 intersect at some later time, i.e.
|J +(t′)〉 ∼= |J −(t′)〉 = |J (t′)〉. At the intersection, the electron spin is disentangled from the
bath and its lost coherence is recovered (by the controlled erasure of the quantum information
registered in the bath). Such a discovery of the reversal of coherent dynamics can be traced back
to the early theoretical and experimental findings on the Loschmidt echo in NMR [48, 49].
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Figure 1. Schematic illustration of the bifurcation of the bath state evolution
conditioned on the electron spin up or down state and the exchange of the evolution
direction of the bath pathways when the electron spin is flipped.

The recovery of the lost coherence (recoherence) by quantum disentanglement is
fundamentally different from the conventional spin echo realized by the refocusing of the random
phase in an inhomogeneously broadened ensemble. In general, the disentanglement can occur
at a time different from the spin echo time. For example, by a single flip of the electron spin
at t = τ, there will be a prominent recoherence at a magic time

√
2τ as a consequence of

disentanglement [5] while the conventional spin echo would occur at 2τ. When the electron spin
is observed in ensemble measurement (realized either by using many similar QDs or by cycling
measurements on a single dot), the disentanglement-induced recoherence will be concealed by
the inhomogeneous broadening unless it is forced to take place at a spin echo time by proper
design of pulse sequences.

The recoherence by disentanglement can be exploited as a coherence protection scheme
in lieu of the dynamical decoupling schemes developed for NMR spectroscopies [48, 50, 51]
and recently for quantum computation [52]–[57]. While the dynamical decoupling schemes
seek to eliminate the object–bath interaction through rapid rotation of a quantum object, the
disentanglement scheme focuses on controlling the wavefunction evolution of the bath and
in general does not lead to a vanishing object–bath coupling. It will be shown that in the
disentanglement scheme, the controlling small parameter for coherence protection is determined
by the interactions within the bath instead of the object–bath coupling, in contrast with the
dynamical decoupling schemes.

This paper is organized as follows: section 2 describes a specific model system (a self-
assembled InAs QD) and summarizes the theoretical ingredients for solving the electron–nuclear
spin dynamics. The FID in single-system dynamics (without ensemble average) and the Hahn
echo in ensemble dynamics are studied in section 3 and 4, respectively. Section 5 presents a
close examination of the single-system dynamics in the single-pulse Hahn-echo configuration,
revealing a coherence recovery due to disentanglement at a magic time which would otherwise
be invisible in ensemble-averaged signals. Section 6 studies the disentanglement under control
of pulse sequences, in particular, the concatenated sequences. Further discussions including the
comparison between the quantum disentanglement and the dynamical decoupling are presented
in the summary section. Some technical details are given in the appendices.
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2. Theory

2.1. The model

The system consists of an electron with spin-1/2 Ŝe and N nuclear spins, Ĵn,α, with Zeeman
energies �e and ωn,α under a magnetic field Bext, respectively, where n denotes the position
and α denotes the isotope type. Hereafter the subscript α will be absorbed into n unless it
is needed for clarity. InAs has the zincblende structure, with In and As ions located in two
interpenetrating face-centred cubic lattices. The natural isotope abundance in InAs materials
is 100, 4.28 and 95.72% for 75As, 113In and 115In, respectively. All the isotopes have nonzero
nuclear spin moments, namely, J75As = 3/2 and J113In = J115In = 9/2. The self-assembled InAs
QD under typical growth condition is modelled as a rectangular quantum box with the growth
direction along [001] and the in-plane extension directions [110] and [11̄0] [58]. The electron
is assumed to be confined by hardwall potential and the envelope wavefunction of the ground
state is

f(r) =
∏

a

√
2

La
cos

πra

La
θ (La − 2 |ra|) , (1)

where ra is the coordinate in the a direction ([110], [11̄0], or [001]), and La is the dimension of
the dot along the indicated direction. The model system is illustrated in figure 2.

The first-principles Hamiltonian for the electron–nuclear spin system includes the electron–
nuclear hyperfine interaction and various intrinsic nuclear–nuclear interactions. A detailed
discussion was given in [4]. Under a moderate magnetic field (Bext > 0.1 T), the electron spin
flip is virtually suppressed due to the large Zeeman energy mismatch between the electron and
nuclei. Virtual flip–flops of the electron spin, however, could mediate an extrinsic interaction
between nuclear spins even when they are well separated in space (as illustrated in figure 3)
[4]. Furthermore, the non-secular part of the nuclear spin interaction which does not conserve
the total Zeeman energy, including flip–flops of hetero-nuclear pairs and single-spin flips, are
neglected. Thus the total effective Hamiltonian is reduced to the form

Ĥ = Ĥe + ĤN +
∑

±
|±〉Ĥ±〈±|, (2)

in the limit of long longitudinal relaxation time (T1 → ∞), where |±〉 are the eigenstates of Ŝz
e ,

Ĥe ≡ �eŜ
z
e , ĤN ≡ ωnĴ

z
n, and the nuclear spin interaction

Ĥ± = ±ĤA + ĤB + ĤD ± ĤE, (3)

with

ĤA ≡
∑
n
=m

′ anam

4�e
Ĵ+

n Ĵ−
m ≡

∑
n
=m

′
An,mĴ+

n Ĵ−
m , (4a)

ĤB ≡
∑
n
=m

′
Bn,mĴ+

n Ĵ−
m , (4b)
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Figure 2. (a) Schematics of a quantum box model for an InAs QD. (b) Schematics
of an electron (the shadow) and one layer of nuclear spins in the QD. The two
boxes in dotted lines indicate two possible choices of boundary of the nuclear spin
bath, which are relatively arbitrary due to the interaction between nuclei within
and without the boundary. When the hyperfine interaction dominates over the
nuclear spin interaction, such arbitrariness has negligible effects on calculation
of the electron spin decoherence as long as all the nuclei in direct contact with
the electron spin have been enclosed.

Figure 3. Hyperfine-mediated interaction between two distant nuclear spins via
the electron (top line).

ĤD ≡
∑
n < m

Dn,mĴz
nĴ

z
m, (4c)

ĤE ≡
∑

n

(an/2) Ĵ z
n ≡

∑
n

EnĴ
z
n. (4d)
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Table 1. InAs material parameters, where γα is the nuclear gyromagnetic ratios,
γex

α the effective nuclear gyromagnetic ratios for the pseudo-exchange interaction,
γe the electron gyromagnetic ratio, γ∗

e the effective electron gyromagnetic ratio
in the QD, and Aα the hyperfine constants.

75As 113In 115In

Abundance 100% 4.28% 95.72%
Spin moment Jα 3/2 9/2 9/2
γα (106 s−1 T−1) +45.8 +58.5 +58.6
γex

α (106 s−1 T−1)a +34.0 +70.1 +70.2
Aα (109 s−1)b +69.8 +85.1 +85.3

γe = +0.176, γ∗
e = −0.132 (1012 s−1 T−1)c

Lattice constant c0 = 6.06 Å

aSee details in [4, 59, 60].
bEstimated with the method in [61].
cg-factor taken to be −1.5.

Table 2. The characteristic energy scales in an InAs QD with dimensions
35 × 35 × 6 nm3 (N ∼ 0.3 × 106), under a field of Bext∼10 tesla.

Unitsa �e ωα En Bn,m, Dn,m An,m

106 s−1 106 500 1 10−4 10−6

µeV 103 0.5 10−3 10−7 10−9

mK 104 5 10−2 10−6 10−8

aThroughout this paper, the units are chosen such that the
Plank constant h̄ and the Boltzmann constant kB are unity.

Here the summation with a prime runs over only the homo-nuclear pairs, ĤA denotes the extrinsic
interaction mediated by the hyperfine interaction, ĤB denotes the off-diagonal part of the intrinsic
nuclear interaction and ĤD the diagonal part, and ĤE is the diagonal part of the contact hyperfine
interaction with amplitude an = Aαc

3
0 |f(Rn)|2. The material parameters are given in table 1 and

the typical energy scales are estimated in table 2. The hyperfine interaction has a typical energy
scale En ∼ an ∼ 106 s−1 for a dot with about 106 nuclei [61]. The intrinsic nuclear spin–spin
interaction is effectively finite-ranged with the near-neighbour coupling Bn,m ∼ Dn,m ∼ 102 s−1.
The extrinsic interaction is ‘infinite-ranged’ (coupling any two nuclear spins within the QD) and
has opposite signs for opposite electron spin states. The extrinsic interaction, in contrast with the
intrinsic one, depends on the external field, and has an energy scale An,m ∼ 1 to 10 s−1 for field
strength Bext varying from 10 to 1 tesla.

We reiterate that our model has included both the extrinsic hyperfine-mediated and the
intrinsic nuclear–nuclear spin interactions. On one hand, without the extrinsic interaction
included [7]–[9], the FID in single system dynamics would not be correctly described, especially
for relatively weak field. On the other hand, without the intrinsic interaction considered [17]–[22],
the theory could not account for the FID in the strong field case when the hyperfine-mediated
interaction is suppressed [4, 21, 22, 24], nor for spin echo signals where the hyperfine interaction
effect is removed in the leading order [4, 23].
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2.2. General formalism

The electron–nuclear spin system is assumed initially prepared in a product state4

ρ̂(0) = ρ̂e(0) ⊗ ρ̂N. (5)

where the nuclear spins are in a thermal state with temperature T . The electron spin can start
from a pure state or a mixed state5 . The state evolution is determined by the Louville equation

∂tρ̂(t) = −i[Ĥ, ρ̂(t)]. (6)

The reduced density matrix of the electron spin is obtained by partial trace over the nuclear
spins as

ρ̂e(t) = TrNρ̂(t), (7)

which is related to the initial state through the correlation superoperator L̂, namely

ρe
µ,ν(t) =

∑
µ′,ν′

Lµ,ν;µ′,ν′(t)ρe
µ′,ν′(0), (8)

where ρe
µ,ν ≡ 〈µ|ρ̂e|ν〉, and |µ〉, |ν〉 ∈ {|+〉, |−〉}. The electron spin relaxation is quantified by

the correlation function Lµ,ν;µ′,ν′ .
Due to the block diagonal form of the reduced Hamiltonian equation (2), the correlation

function has following properties

Lµ,ν;µ′,ν′(t) = Lµ,ν(t)δµ,µ′δν,ν′, (9a)

Lµ,µ(t) = 1, (9b)

L+,−(t) = L∗
−,+(t)

= e−i�etTrN[ρ̂Ne+iĤ−te−iĤ+t], (9c)

where the last equation has been expressed for the FID and can be straightforwardly extended
to the dynamics under pulse control. No longitudinal relaxation remains (T1 = ∞) after the
elimination of the electron spin flip processes by the magnetic field. Since the Zeeman energy
Ĥ0 results in only a global phase-factor e−i�et, from now on we will consider only the interaction
Hamiltonian Ĥ1 ≡ Ĥ − Ĥ0 by dropping the trivial phase-factor.

Since the nuclear Zeeman energy under the external field dominates over the hyperfine
interaction and the nuclear spin interaction and the temperature to be considered is much higher
than the interaction energy, the thermal nuclear spin state can be taken as

ρ̂N ∼= e−ĤN/T =
∑

J

PJ |J 〉〈J |, (10)

4 It is also interesting to consider the electron spin decoherence and the nuclear spin dynamics for a system with
certain initial electron–nuclear entanglement, which will be covered in our future publications.
5 The electron spin being in a mixed state means that it is entangled with its ‘environment’. Since we have assumed
the electron and the nuclei are initially in a product state, the mixedness must come from other sources, such as the
photon noise in optical pump and control of the electron spin.
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where |J 〉 ≡ ⊗
n |jn〉 is an eigenstate of ĤN and PJ = ∏

n pjn
is the probability distribution

with

pjn,α
≡ e−jn,αωn/T∑+Jα

j=−Jα
e−jωn/T

, (11)

giving the population of the single-spin state |jn〉. We note that such a nuclear spin state has
no off-diagonal coherence (between the Zeeman energy eigenstates). The correlation function
of the electron spin coherence, expressed in terms of the wavefunction overlap of the nuclear
spins, is

L+,−(t) =
∑

J

PJ
〈
J −(t)

∣∣ J +(t)
〉
, (12)

with
∣∣J ±(t)

〉 ≡ exp
(
−iĤ±t

)
|J 〉. The correlation function L+,−(t) is closely related to the

Loschmidt echo in [63]–[65]. Being independent of the electron spin initial state, L+,−(t) will
be equated with the electron spin coherence without causing confusion. The decoherence by
entanglement is transparent from equation (12): with the nuclear spin states |J ±(t)〉 driven by
different Hamiltonians Ĥ±, the electron–nuclear spin state C+|+〉 ⊗ |J +(t)〉 + C−|−〉 ⊗ |J −(t)〉
becomes an entangled one when

〈
J −(t)

∣∣ J +(t)〉 < 1, so the electron spin coherence is lost.

2.3. Essential assumptions

The method to be used in this paper consists of two steps. Firstly, the electron spin decoherence
in ensemble dynamics is factorized into two parts: the dephasing due to static inhomogeneous
broadening, and the decoherence due to the dynamical entanglement between the electron and
the nuclei in single-system dynamics. Secondly, the nuclear spin dynamics is solved with the
pair-correlation approximation. The following assumptions are essential for the theory.

1. Mesoscopia: firstly, the QD should be small enough to guarantee the dominance of the
hyperfine interaction over the nuclear spin interaction so that the isolation of a mesoscopic
bath is possible. Secondly, the bath size (i.e. the number of nuclear spins in the QD, N) should
be large enough to have genuine decoherence (i.e. the Poincaré time is much greater than
the spin relaxation time T1 and T2). Thirdly, N � √

N is required so that the central limit
theorem in statistics can be utilized for the factorization of the single-system dynamics
from the inhomogeneous broadening effect. And finally, to justify the pair-correlation
approximation, the bath size N is bounded so that the number of nuclear pair-flips in the
relevant timescale is small compared with N (see appendix B).

2. Moderate to strong field: the electron Zeeman energy �e be much greater than the hyperfine
energy an so that the electron spin flip is suppressed [4, 17, 21].6

3. Finite temperature: the temperature be higher than or comparable to the nuclear Zeeman
energy (T � ωα ∼ 1 mk). Otherwise, in a near fully polarized nuclear spin bath under an
extremely low-temperature, the pair flip–flops occur only among a few available nuclear
spins and hence are highly correlated, in which the pair-correlation approximation is

6 In low fields, it may be possible to treat the off-diagonal hyperfine interaction as elementary excitations within
the pair-correlation approximation as well as the nuclear spin pair-flips are. This generalization, however, is beyond
the scope of this paper.
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invalid. Also, the temperature should be low enough to prevent the phonon scattering effect
(T � 1 K) [27]–[30].

4. Short-time dynamics: the timescales under consideration should be short compared with the
inverse nuclear spin interaction strength (∼1 ms) so that the number of pair-flips over time
is small compared with N. The timescales of interest in the decoherence problem include
the coherence memory time, pulse delay time in control sequences, and the total duration
of a control pulse sequence.

The other approximations in the model, including the assumptions on the QD shape, the electron
wavefunction, and the specific form of the spin interactions, are inconsequential to the theory.

2.4. Ensemble and single-system dynamics

The electron spin decoherence given in equation (9) includes two contributions, namely, the
thermal fluctuations due to the ensemble average of different nuclear spin configurations
{|J 〉〈J |}, and the quantum entanglement due to the dynamical evolution starting from a pure
state |J 〉, which is conditioned on the electron spin state. We use the term single-system dynamics
to denote the quantum evolution governed by the Schrödinger equation

i∂t|J ±(t)〉 = H±|J ±(t)〉, (13)

and ensemble dynamics to denote the ensemble average of the single-system dynamics.
The ensemble dynamics was studied in the formalism of density matrix with the pair-

correlation approximation [7]. Many important features of the quantum entanglement process,
however, could have been overlooked without resolving the single-system dynamics since the
static inhomogeneous broadening usually has much stronger effects on the decoherence than the
dynamical entanglement. We choose a different procedure to study the problem. Namely, we
will first solve the single-system dynamics starting from a certain nuclear spin configuration,
and then construct the ensemble dynamics via

LJ
+,−(t) ≡ 〈J −(t)|J +(t)〉, (14a)

L+,−(t) =
∑

J

PJ LJ
+,−(t). (14b)

Such a construction of the ensemble dynamics, in general, would require sampling a large number
of initial states |J 〉 in the thermal ensemble.

When the system is sufficiently large and the temperature is appreciable for the nuclear
spins, the decoherence due to quantum fluctuations in single-system dynamics (equation 14a) is
almost the same for all possible initial nuclear configurations in the thermal ensemble, except for
a global phase factor related to the static Overhauser field resulting from the diagonal hyperfine
interaction. This is confirmed by numerical verification (see appendixA). Here we give a physical
argument: for a sufficiently large number of nuclear spins far from being fully polarized, the
number of spins available for pair-wise flip–flops is large, so the electron spin decoherence is
virtually determined by the nuclear spin excitation spectra (or density of states). By the statistical
central limit theorem, the excitation spectrum of a large system is the same (up to a relative
variance ∼1/

√
N) for different initial states |J 〉. Then the electron spin decoherence can be
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factorized into a contribution from the static inhomogeneous broadening Linh and one from the
quantum fluctuation in single-system dynamics Ls, defined as

L+,−(t) ∼= Linh
+,−(t)Ls

+,−(t), (15a)

Ls
+,−(t) ≡ ∣∣〈J −(t)|J +(t)〉∣∣ , (15b)

Linh
+,−(t) =

∑
J

PJ e−iEJ t =
∫

P (E) e−iEtdE, (15c)

where the hyperfine energy due to the local Overhauser field in a certain nuclear spin
configuration is

EJ ≡
∑

n

jnan, (16)

and the inhomogeneous broadening distribution is defined as

P(E) ≡
∑

J

PJ δ(E − EJ ). (17)

The quantum fluctuation effect in the single-system dynamics can be evaluated for an initial
configuration |J 〉 randomly selected from the ensemble, with the global phase factor absorbed
into the inhomogeneous broadening.

The effect of the static inhomogeneous broadening can be calculated by neglecting the
nuclear spin interaction (setting ĤA = ĤB = 0). Without the flip-flop dynamics, the nuclear
spin ensemble would be a random distribution of frozen configurations, which, as a standard
multinomial distribution for a large system, leads to a Gaussian distribution of the Overhauser
field

P(EJ ) = 1√
2π�∗

2

e−(EJ −E0)
2
/(2�∗

2)
2

, (18)

where the averaged local field E0 and the inhomogeneous broadening �∗
2 are

E0
∼=

∑
α

(
2NαAαN

−1jα

) ≡
∑

α

E0,α, (19a)

�∗
2

∼=
√∑

α

(
4NαA2

αN
−2j2

α − E2
0,αN

−1
α

)
, (19b)

respectively, with jα ≡ ∑
j jpα,j, j2

α ≡ ∑
j j2pα,j, and Nα denoting the number of α-type nuclei

(N ≡ ∑
α Nα). Thus we reproduce the expressions for the T ∗

2 dephasing obtained in [17]. A
typical example of the Overhauser field distribution is shown in figure 4. The electron spin
dephasing by inhomogeneous broadening is a Gaussian decay

Linh
+,−(t) = e−iE0t−(t/T ∗

2 )
2

, (20)

with the effective dephasing time T ∗
2 ≡ √

2/�∗
2. The inhomogeneous broadening effect can be

removed by spin echo. In the rotating frame rested on the electron spin, the Overhauser field
changes its sign each time the electron spin is flipped by a short pulse. Thus under the flipping
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Figure 4. Distribution of the Overhauser field for a thermal ensemble of nuclear
spins in an InAs QD of size 34 × 34 × 3 nm3 at a temperature of 1 K and under an
external field of 1 tesla. The dots in the figure are obtained by numerical simulation
of 40 000 random samples, and the curve is calculated with equations (18)–(19).
The arrows indicate four randomly selected nuclear spin configurations to be used
for figure A.1 in appendix A.

operation of a sequence of pulses applied at t = t1, t2, . . ., tn, the dephasing by the inhomogeneous
broadening becomes

Linh
+,−(t) =

∑
J

PJ e−iEJ t = e−iE0t−t
2
/(T ∗

2 )
2

, (21)

with t ≡ t1 − (t2 − t1) + (t3 − t2) · · · − (−1)n(t − tn). Obviously, the phase accumulation from
the random Overhauser field is cancelled at t = 0, leading to the spin echo. At the spin-echo
time, the electron spin decoherence results solely from the dynamical quantum entanglement.

Under typical conditions considered in this paper, T ∗
2 is found to be of the order of

nanoseconds, consistent with various experimental measurements [37, 39, 40, 65]. As will
be shown below, in agreement with the available experimental data [40, 41, 66], the electron
spin decoherence by quantum fluctuations in single-system dynamics has a timescale in the
order of microseconds. Thus, from equation (15), the ensemble dynamics will be dominated by
inhomogeneous broadening and the single-system dynamics is virtually invisible in ensemble
experiments, unless the inhomogeneous broadening effect is removed by spin echo. The decay of
spin-echo signals is usually attributed to the pure decoherence due to quantum fluctuations. We
have shown, however, by examining directly the single-system dynamics, the flipping pulses have
nontrivial effects on the nuclear spin dynamics and, therefore, on the dynamical entanglement,
making the spin-echo decay time significantly different from the FID time in single-system
dynamics [4]. Such a difference would not be realized without resolving the single-system
dynamics from the ensemble average [7]–[9].

From now on, we will concentrate on the single-system dynamics, and show a few
surprising effects which would otherwise be concealed by inhomogeneous broadening in
ensemble dynamics. It should be emphasized that the single-system dynamics in a QD at a
finite temperature is not a mathematical idealization but has measurable effects. For example,
a projective measurement of the local Overhauser field could be used to limit the nuclear spin
configurations by post-selection and thus to observe single-electron dynamics without spin echo
[20], [67]–[69]. The single-system dynamics is basic to quantum technologies such as quantum
computation which cannot be performed in ensembles for scalability to large systems without
exponential explosion in resource [70].
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2.5. Pair-correlation approximation and pseudo-spin model for nuclear spin dynamics

With the Hamiltonian given in equation (4), the quantum evolution of the nuclear spins is driven
by the pair-wise homo-nuclear spin flip–flops as the elementary excitations. The transition for
the pair-flip driven by the operator J+

n J−
m is

|jn〉n|jm〉m −→ |jn + 1〉n|jm − 1〉m. (22)

The transition between the electron–nuclear spin many-body states through the pair-flip is
denoted by

|±〉|J 〉 −→ |±〉|J , k〉, (23)

where k is shorthand for the pair-flip in equation (22). The transition described in equation (23) is
characterized by the matrix elements ±Ak + Bk and the energy costs Dk ± Ek, which are derived
from the microscopic models as follows

Ak ≡ 〈J , k| ĤA |J 〉 = anam

4�e

√
Jn (Jn + 1) − jn (jn + 1)

√
Jm (Jm + 1) − jm (jm − 1), (24a)

Bk ≡ 〈J , k| ĤB |J 〉 = Bn,m

√
Jn (Jn + 1) − jn (jn + 1)

√
Jm (Jm + 1) − jm (jm − 1), (24b)

Dk ≡ 〈J , k| ĤD |J , k〉 − 〈J | ĤD |J 〉
=

∑
n′

Dn,n′jn′ −
∑
m′

Dm,m′jm′ − Dn,m + Dn,n (jn + 1) − Dm,m (jm − 1) , (24c)

Ek ≡ 〈J , k| ĤE |J , k〉 − 〈J | ĤE |J 〉 = (an − am)/2. (24d)

The basic processes for the electron spin decoherence may be described as follows. The off-
diagonal part of the nuclear spin interaction (including the intrinsic one ĤB and the extrinsic
hyperfine-mediated one ĤA) causes the pair-wise nuclear spin flip–flops, leading to a fluctuating
local Overhauser field and in turn a random dynamical phase for the electron spin. In the quantum
picture, the entanglement is developed because the quantum evolution of the nuclear spins driven
by the Hamiltonians ±ĤA + ĤB + ĤD ± ĤE is conditioned on the electron spin state through the
± signs originating from the hyperfine interaction.

As discussed in [4] and [7] and further checked for pulse sequence control cases in
appendix C, within a time t much smaller than the inverse nuclear interaction strength, the
total number of pair-flip excitations Nflip is much smaller than the number of nuclei N. The
probability of having pair-flips correlated is estimated to be Pcorr ∼ 1 − e−qN2

flip/N (q being the
number of nearest neighbours) [7], which, as also shown by a posteriori numerical check (see
appendix C), is bounded by ∼ 10% in the worst scenario studied in this paper. Thus, the pair-
flips as elementary excitations from the initial state can be treated as independent of each other,
with a relative error ε � Pcorr (see appendix D). Then the single-system dynamics |J ±(t)〉 can
be described by the excitation of pair-correlations as non-interacting quasi-particles from the
‘vacuum’ state |J 〉, driven by the ‘low-energy’ effective Hamiltonian,

Ĥ±
J =

∑
k

χ̂±
k ≡

∑
k

χ±
k · σ̂k/2, (25)
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which has been written in such a way that each pair-flip is treated as a pseudo-spin 1/2, represented
by the Pauli matrix σ̂k, with k labelling all possible pair-flips. The time evolution from the initial
state |J 〉 can be viewed as the rotation of the pseudo-spins, initially all polarized along the −z

pseudo-axis:
⊗

k | ↓〉k, under the effective pseudo-magnetic field,

χ±
k ≡ (±2Ak + 2Bk, 0, Dk ± Ek), (26)

for the electron spin state |±〉, respectively. Such a treatment of the nuclear spin correlations
amounts to taking into account all the pairwise correlations and neglecting the higher-orders.
The pair-correlation approximation, equivalent to the lowest order cluster expansion in [7],
corresponds to the leading term in the linked cluster expansion [6] and the density matrix cluster
expansion [9].

The entanglement between the electron spin and the pseudo-spins, and hence the electron
spin decoherence, are developed as the pseudo-spins precess about different pseudo-fields χ±

k

corresponding to different electron spin states |±〉. Namely, the product state

(C+|+〉 + C−|−〉)
⊗

k

| ↓〉k, (27)

will evolve into an entangled one

C+|+〉
⊗

k

∣∣ψ+
k (t)

〉
+ C−|−〉

⊗
k

∣∣ψ−
k (t)

〉
, (28)

with ∣∣ψ±
k (t)

〉 = exp
(−iχ̂±

k t
) |↓〉 = e−iχ±

k · σ̂kt/2| ↓〉. (29)

The electron spin coherence is determined by the overlap between the ‘conjugate’ states |ψ+
k (t)〉

and |ψ−
k (t)〉 of the pseudo-spins,

Ls
+,−(t) =

∏
k

∣∣〈ψ−
k (t)

∣∣ ψ+
k (t)

〉∣∣ . (30)

The pseudo-spin states have a geometrical representation as Bloch vectors,

σ±
k ≡ 〈ψ±

k |σ̂k|ψ±
k 〉/2. (31)

Figure 5 shows the evolution of two conjugate pseudo-spin states |ψ±
k (t)〉 in two paths of the

conjugate Bloch vectors σ±
k on a sphere. The overlap between the conjugate pseudo-spin states

is related to the distance between the two vectors δk = ∣∣σ−
k − σ+

k

∣∣ by∣∣〈ψ−
k (t)

∣∣ ψ+
k (t)

〉∣∣2 = 1 − δ2
k. (32)

Thus, the square of the distance δ2
k is the distinguishability between the two conjugate states.

This geometrical picture gives an interpretation of the decoherence process as a measurement.
The ‘measuring device’ composed of nuclear spins evolves in two pathways, each for an electron
spin eigenstate, up or down. When the sum of the distinguishability between the conjugate states
of all pair-flips is large enough, the ‘device’ states are ‘macroscopically’ distinguishable. The
coherence between the basis states is destroyed by the measurement [46]. The pseudo-spin picture
will provide us with a physical guide to the decoherence control by pulse sequences, which is
not available from the density matrix expansion method [7].
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Figure 5. The Bloch vectors for the pseudo-spin states |ψ±
k (t)〉 precess about the

pseudo-fields χ±
k for the electron spin states |±〉, respectively.

3. Free-induction decay

The separation of the single-system dynamics from the ensemble dynamics offers an opportunity
to study the FID of electron spin coherence due to dynamical entanglement, which would
otherwise be concealed by the much stronger effect of inhomogeneous broadening and could
not be resolved in ensemble dynamics study [7].

The pseudo-spin evolution is directly calculated from equation (29) to be∣∣ψ±
k (t)

〉 =
(

cos
χ±

k t

2
− iσ̂k · sin

χ±
k t

2

)
| ↓〉, (33)

where the sine function of a vector v is defined as sin(v) ≡ (v/v) sin(v). The distinguishability
between the conjugate pseudo-spin states |ψ±

k 〉 is

δ2
k = t4 (BkEk − AkDk)

2 sinc2 χ+
k t

2
sinc2 χ−

k t

2

+ t2

[
(Bk + Ak) cos

χ−
k t

2
sinc

χ+
k t

2
− (Bk − Ak) cos

χ+
k t

2
sinc

χ−
k t

2

]2

. (34)

This expression is used in the numerical evaluation of the electron spin coherence.
To gain some insight into the FID features, we make two approximations which are well

justified. First, the pseudo-spins are separated into two groups, GA and GB, corresponding to
nonlocal and local flip–flops, respectively. For the local pair-flips (k ∈ GB), the transition matrix
element is dominated by the intrinsic nuclear spin interaction as Bk � Ak under a moderate
magnetic field, while for the nonlocal pair-flips (k ∈ GA), the extrinsic hyperfine-mediated
interaction dominates7 . Thus the coherence is factorized as

Ls
+,− = LA

+,− × LB
+,−, (35a)

7 The boundary between the two groups is not exact but this is not important since the pair-flips around the boundary
are much weaker in the strength of the transition matrix elements than those in GB and are much fewer in number
than in GA.
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Figure 6. (a) The conjugate Bloch vectors for a pair-flip by the intrinsic nuclear
interaction with the diagonal part neglected (χ±

k = (Bk, 0, ±Ek)). (b) The same as
(a) but for a nonlocal pair-flip [χ±

k = ±(Ak, 0, Ek)]. (c) and (d) are the projections
of (a) and (b) to the x–y-plane, respectively, in which the dotted trajectories show
the effect of the diagonal nuclear interaction (Dk) (with the deviation from the
solid curves exaggerated for visibility).

LA/B
+,− =

∏
k∈GA/B

∣∣〈ψ−
k (t)|ψ+

k 〉
∣∣

∼= exp


−1

2

∑
k∈GA/B

δ2
k


 . (35b)

The pseudo-spins in GA and those in GB have dramatically different precession behaviours. The
conjugate pseudo-spins for a nonlocal pair-flip precess into opposite directions (see figures 6(b)
and (d)), since both the transition amplitude (Ak) and the dominating part of energy cost (Ek)
are associated with opposite signs for opposite electron spin states because of their hyperfine
interaction origins. On the other hand, the intrinsic nuclear spin interaction is independent of the
electron spin state, and the corresponding pseudo-spin bifurcates tangentially (see figures 6(a)
and (c)). In the second approximation, we neglect the diagonal nuclear spin interaction Dk,
which is justified from equation (34) with the condition Dk � Ek. This simplification can also
be understood with the geometrical picture shown in figure 6. A small change of the energy
cost by the diagonal nuclear interaction induces only a slight modification of the pseudo-spin
precession pathways, and hence a negligible change of the distance δk. We will see, however, the
diagonal nuclear spin interactions are important for the decoherence dynamics under control by
pulse sequences.
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With the two simplifications and the conditions Ek � Bk, Ak, the distinguishability between
conjugate pseudo-spin states is

δ2
k =




4t2A2
k cos2 Ekt

2 sinc2 Ekt

2 ≈ 4t2A2
k (k ∈ GA),

t4E2
kB

2
ksinc4 Ekt

2 ≈ t4E2
kB

2
k (k ∈ GB),

(36)

where the short-time approximation holds for t � E−1
k . Within timescales of interest

(t � B−1
k , A−1

k ), it is always satisfied that δ2
k � 1, so the coherence is approximated as

LA
+,− ∼= exp

(
−2t2

∑
k∈GA

A2
k cos2 Ekt

2
sinc2 Ekt

2

)
, (37a)

LB
+,− ∼= exp

(
−1

2
t4

∑
k∈GB

E2
kB

2
ksinc4 Ekt

2

)
. (37b)

As the number of pseudo-spins is large, the details of individual pseudo-spins are not
important to the decoherence but what matters is the excitation spectrum, which is
defined as8

SA(ε) ≡
∑
k∈GA

δ (ε − Ek) A2
k, (38a)

SB(ε) ≡
∑
k∈GB

δ (ε − Ek) B2
k, (38b)

for the pair-flips in group GA and GB, respectively. The decoherence in terms of the excitation
spectra is

LA
+,− ∼= exp

(
−2t2

∫
dε SA(ε) cos2 εt

2
sinc2 εt

2

)
, (39a)

LB
+,− ∼= exp

(
−1

2
t4

∫
dε SB(ε)ε2sinc4 εt

2

)
. (39b)

We are now ready to analyse some important features of the FID, including the short-time
behaviour, the dependence on the field strength and on the QD size, and the emergence of
Markovian decay.

In the timescale t � E−1
k , the pair-flips cannot be described by energy-conserving scattering

events, but should be understood in terms of quantum evolution. The decoherence is a highly non-
Markovian dynamics. Particularly, in the very initial stage (t � E−1

k ), according to equation (36),
the electron spin coherence is well approximated as

LA
+,− ≈ exp

(−t2/T 2
2,A

)
, (40a)

8 The definition of the excitation spectrum at vanishing frequency, however, is tricky as the density of states at
ε = 0 can be made arbitrarily large by enclosing nuclear spins out of the range of the electron wavefunction, which
contribute to local pair-flips costing zero hyperfine energy (Ek = 0) and inducing no decoherence. To remove such
indefiniteness, we indeed define the regularized excitation spectra to be S̃A/B(ε) ≡ ∫ ε+ε0

ε−ε0
ω2SA/B(ω)dω/

∫ ε+ε0

ε−ε0
ω2dω,

where ε0 is chosen such that t−1 � ε0 > Bk.
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LB
+,− ≈ exp

(−t4/T 4
2,B

)
, (40b)

which is not an exponential decay, a typical indicator of Markovian dynamics. Note that the
exponential indices are substantially different from the semiclassical theory predictions [25, 26].
The decoherence times in the short-time limit are

T2,A ≈
(

2
∑
k∈GA

A2
k

)−1/2

∼ N�e

A2
α

, (41a)

T2,B ≈
(

1

2

∑
k∈GB

E2
kB

2
k

)−1/4

∼ N5/12

B
1/2
k A1/2

α

. (41b)

Here, we have used the facts that Ak ∼ N−2A2
α�

−1
e , the number of spin pairs connected

by the extrinsic hyperfine-mediated interaction is about N2, the number of spin pairs connected
by the intrinsic interaction is of the order of N, and the typical hyperfine energy cost Ek for
spin flip–flops between neighbouring nuclei is of the order of N−1/3an,α ∼ N−4/3Aα.

A few features of the FID in the short-time limit (t � E−1
k ) are summarized as follows.

The decoherence caused by the intrinsic interaction has a quartic exponential decay profile and
that by the hyperfine-mediated interaction has a quadratic one. So the decoherence is initially
dominated by the hyperfine-mediated interaction and then cross over to the regime dominated by
the intrinsic interaction as time increases. For a QD with 105 nuclear spins and an external field
of strength 10 tesla, the decoherence times due to the local and nonlocal pair-flips, TB and TA, are
both of the order of 1 µs. The two decoherence times have very different dependence on the QD
size (measured by N) and the field strength (measured by �e), as can be seen from equation (41).
The hyperfine-mediate interaction could be the dominating decoherence mechanism when the
QD size is small or when the external magnetic field is weak (e.g. Bext ∼ 1 tesla). The intrinsic
interaction becomes dominating for large QD or when the field is strong (see figure 7). In a QD
of proper size and under an external field of proper strength, the crossover from the quadratic
to the quartic exponential decay presents in a visible regime, i.e. in a time range where the
electron spin decoherence has decayed by a finite amount but not vanished yet (see the curves
for Bext = 12 tesla in figure 7(b)). The crossover can be tuned to occur after the coherence has
vanished (as for Bext < 10 tesla in figure 7) or before the decoherence is significant (as for
Bext > 14 tesla for the QD in figure 7, in which the data are not shown), then the decoherence
in the visible regime will be dominated by the hyperfine-mediated interaction or the intrinsic
interaction, respectively. Particularly, in the strong field regime, the decoherence time of FID
in single-system dynamics would be greatly underestimated without the intrinsic nuclear spin
interaction included [17]–[22].

In general, the Markovian decay will emerge with time increasing, particularly for t > E−1
k ,

when the Fermi-Golden rule starts to come into effect (as indicated by the sinc function in
equations (37) and (39)). Actually, the spin coherence at time t is mostly determined by
the pseudo-spins with energy cost Ek < t−1, while the effects of pseudo-spins with higher
precession frequency are cancelled out by destructive interference (between the fast-oscillating
sinc functions). In the long-time limit (while t � B−1

k is still satisfied), the excitation spectra
SA/B(ε) in equation (39) can be taken as ‘flat’ in the frequency range [ − 1/t, 1/t], which covers
those pseudo-spins that contribute significantly to the decoherence. The assumption of ‘flat’
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Figure 7. (a) Electron spin coherence as functions of time for various field
strengths. (b) The logarithm plot of (a), in which the curve for Bext = 12 tesla
is compared with the contribution by the hyperfine-mediated interaction (the
dashed line) and that by the intrinsic interaction (the dotted line), respectively.
The size of the InAs dot is 33 × 33 × 3 nm3 and the nuclear-spin initial state |J 〉
is randomly selected from an ensemble at temperature 1 K. The field strength is
indicated by the numbers for each curve.

spectra is just the Markovian approximation. So for time much greater than the inverse widths of
the excitation spectra (which are roughly the inverse typical energy cost of the pair-flips, E−1

k ),
the electron spin coherence is approximated as

LA
+,− ≈ e−tSA(t−1)

∫
4 cos2 xsinc2xdx ≡ e−t/T∞,A, (42a)

LB
+,− ≈ e−tSB(t−1)

∫
4 sin2 xsinc2xdx ≡ e−t/T∞,B , (42b)

presenting an exponential decay, a signature of the Markovian dynamics. The decoherence rate
in the Markovian regime is determined by the weighted density of states of the elementary
excitations, i.e. the pair-flips, which, by the definition of the excitation spectra in equation (38),
is related to the Fermi–Golden rule by

T −1
∞,A = ξA

∑
k

A2
kδ

(
t−1 − Ek

)
, (43a)

T −1
∞,B = ξB

∑
k

B2
kδ

(
t−1 − Ek

)
, (43b)

where ξA/B denotes the integral in equation (42) and is of the order of unity.
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Figure 8. (a) The electron spin coherence in a QD of size 15 × 15 × 2.4 nm3,
under a field of 10 tesla and temperature of 1 K. The lower curves are calculated
with the hyperfine-mediated pair-flips neglected, and the dotted lines are the
short-time profile. The non-Markovian-to-Markovian crossover is observed.
(b) The excitation spectra for the nonlocal and local pair-flips.

Under the conditions considered in this paper, the Markovian behaviour will not be fully
developed before the coherence has totally vanished, but instead a crossover behaviour, namely,
a reduction of the exponential index could be observed in the visible regime for certain QD
size and field strength. An example of such non-Markovian-to-Markovian crossover is shown in
figure 8(a). The typical energy cost of local pair-flips and that of nonlocal ones is in the order of
AαN

−4/3 and AαN
−1, respectively, so the excitation spectrum of local pair-flips is much narrower

than that of nonlocal ones (as shown in figure 8(b)). Thus we expect that the Markovian dynamics
will emerge earlier for the quadratic exponential decay (caused by nonlocal pair-flips) than for the
quartic one (caused by local pair-flips). To observe the non-Markovian-to-Markovian crossover
before the decoherence is complete, one should have E−1

k < T2,A/B which is satisfied in relatively
small QDs (for decoherence contributed by local pair-flips) or under relatively strong external
field (for decoherence contributed by nonlocal pair-flips).

Due to the rich crossover behaviours discussed above, the decoherence in general cannot be
characterized by a single time parameter T2. We introduce a decoherence time T1/e to quantify the
time when the electron spin coherence has decayed to 1/e of its initial value. The decoherence
time T1/e can approach T2,A, T2,B, T∞,A, or T∞,B, depending on the QD size and the field strength
which set the conditions for the crossovers. The field- and the size-dependence of different
decoherence times shown in figures 9 and 10, respectively, are consistent with the analysis
above. For comparison, we also plot the decoherence time measured by the Hahn echo TH,
which will be studied in the next section.
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Figure 9. Field dependence of decoherence times with the inhomogeneous
broadening effect excluded (T1/e—time for FID coherence being 1/e of its initial
value,T2,A—FID decoherence time resulting solely from hyperfine-mediated pair-
flips, T2,B—FID decoherence time resulting solely from the intrinsic nuclear spin
interaction, TH—decay time of the Hahn echo signal). The

√
2T2,B is plotted to

compare with the Hahn echo decay time. The QD is as in figure 7.
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Figure 10. QD-size dependence of decoherence times with the inhomogeneous
broadening excluded (see figure 9 and the text for definition). The

√
2T2,B is

plotted to compare with the Hahn echo decay time. The QD size is varied with
fixed width : depth : height ratio 33 : 33 : 6, the field strength is 10 telsa, and the
temperature is 1 K.

4. Hahn echo signal

The FID studied in the previous section is not visible in ensemble experiments in which
dephasing due to inhomogeneous broadening is faster by orders of magnitude than decoherence
by dynamical entanglement. It might be difficult in the near future to directly observe the
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single-system dynamics by filtering out the inhomogeneous broadening with projective
measurement of the local Overhauser field [20], [67]–[69]. Thus the spin echo may be used
to study the electron spin decoherence problem in QDs. In Hahn echo experiments, the static
Overhauser field experienced by the electron spin effectively changes its sign each time the
electron spin is flipped by a short π-pulse. Considering the simplest configuration in which only
one pulse is applied at t = τ, the precession phase accumulated from the random local fields
is eliminated at t = 2τ. Thus the decay of Hahn echo signals at t = 2τ is solely due to the
dynamical entanglement. The decay time of Hahn echo signals is usually used to quantify the
spin decoherence time. We shall show, however, the Hahn echo decay time cannot be equated
with the decoherence time, as the decoherence by hyperfine-mediated interaction will be virtually
eliminated from the echo signal and that by intrinsic interaction is also suppressed to some extent.

The π-rotation or flip of the electron spin for Hahn echo can be operated by a GHz microwave
pulse [71]–[73], which is only marginally fast enough for eliminating the rapid dephasing by
inhomogeneous broadening in III–V compound QDs. In optical control of an electron spin [74],
an arbitrary rotation of the electron spin can be completed in the timescale of 10 ps via exciton-
mediated Raman processes. With respect to the timescale of the electron spin decoherence, the
optical pulses can be considered instantaneous. The recent experiment on double GaAs QDs also
employs a rather long dc voltage pulse to control the singlet–triplet transition to realize the spin
echo [40], which does not satisfy the instantaneous pulse condition. It is certainly interesting to
study the electron spin decoherence under the control of finite-duration pulses [56], but in this
paper we would rather focus on the case of instantaneous pulses.

As our general rule, the Hahn echo signal is determined by the distinguishability δ2
k between

the conjugate pseudo-spins. In the rotating reference frame rested on the electron spin, the
pseudo-spin states after the π-pulse applied at τ are

|ψ±
k (t > τ)〉 = Û∓

k (t − τ)Û±
k (τ)| ↓〉, (44)

which is equivalent to the conjugate pseudo-spin states |ψ±
k (t)〉 exchanging their pseudo-fields

χ±
k when the electron spin is flipped. The trajectories of the Bloch vectors, projected to the

x–y-plane, are shown in figure 11, both for local and for nonlocal pair-flips. The pseudo-spin
states after the flip pulse are

|ψ±
k (τ + t′)〉 =

[
cos

χ∓
k t′

2
cos

χ±
k τ

2
− sin

χ∓
k t′

2
· sin

χ±
k τ

2

−iσ̂k ·
(

cos
χ∓

k t′

2
sin

χ±
k τ

2
+ cos

χ±
k τ

2
sin

χ∓
k t′

2
+ sin

χ∓
k t′

2
× sin

χ±
k τ

2

)]
| ↓〉.

(45)

The Hahn echo signal is

Ls
+,−(2τ) =

∏
k

∣∣〈ψ−
k (2τ)|ψ+

k (2τ)〉∣∣ . (46)

With the same arguments as in section 3, the electron spin decoherence can be factorized
into two contributions, namely Ls

+,− = LA
+,− × LB

+,− with

LA/B
+,− ≈

∏
k∈GA/B

exp
(−δ2

k/2
)
. (47)
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Figure 11. (a) The trajectories (projected to the x-y-plane) of the conjugate
pseudo-spins by the intrinsic interaction. The conjugate pseudo-spins |ψ±

k 〉
exchange their pseudo-fields χ±

k at t = τ when the electron spin is flipped by
a short pulse. The solid and dotted curves denote the trajectories before and after
the flipping pulse, respectively. (b) The same as (a) but for a nonlocal pair-flip by
the hyperfine-mediated interaction.

For the local pair-flips driven by the intrinsic nuclear spin interaction, the distinguishability
between conjugate pseudo-spins at t = 2τ is calculated by setting Dk = Ak = 0:

δ2
k
∼= 1

4(2τ)4E2
kB

2
ksinc4 Ekτ

2 ≈ 1
4(2τ)4E2

kB
2
k, (48)

where the second approximation holds for τ � E−1
k . The short-time behaviour is

LB
+,−(2τ) ≈ e−(2τ)4/T 4

H,B, (49)

the same as the FID signal except that the decay time

TH,B =
√

2T2,B. (50)

For nonlocal pair-flips driven by the hyperfine-mediated interaction, the pseudo-fields χ±
k are

opposite to each other if the energy cost due to the diagonal nuclear spin interaction is neglected
(Dk = 0). In this case, the pseudo-spins simply reverse their precession directions when the
electron spin is flipped, returning to its original states at the echo time, as shown in figure 11(b),
so the decoherence by the hyperfine-mediated pair-flips is fully eliminated if Dk is negligible. The
elimination of the hyperfine interaction induced decoherence by spin echo was noticed before in
numerical simulations of few-spin systems [23].As the leading order of the distance δk vanishes at
the echo time, the secondary effect of the diagonal nuclear spin interaction becomes important.
The distinguishability between conjugate pseudo-spins for nonlocal pair-flips, including the
effect of Dk, is given by

δ2
k
∼= 1

4(2τ)4D2
kA

2
ksinc4 Ekτ

2 ≈ 1
4(2τ)4D2

kA
2
k, (51)

where again, the second approximation holds for τ � E−1
k . The residual decoherence due to the

interplay of the hyperfine-mediated interaction and the diagonal nuclear spin interaction has the
quartic exponential form for τ � E−1

k as

LA
+,−(2τ) ∼= e−(2τ)4/T 4

H,A . (52)
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The corresponding decoherence time is

TH,A =
(∑

k∈GA

D2
kA

2
k/8

)−1/4

∼ N1/2�1/2
e

AαD
1/2
k

, (53)

proportional to the square root of the field strength.
Now we compare the echo signals to the FID signal in single-system dynamics (see figures 9

and 12). The observation is that the decoherence due to the dynamical quantum entanglement
in general is not measured by the Hahn echo signals. Firstly, the FID and the echo signals could
have qualitatively different short-time behaviours, as the former could have quadratic exponential
decay due to the hyperfine-mediated interaction while the latter always has the quartic exponential
decay. Secondly, the decay timescale could be dramatically different from the FID to the Hahn
echo. The difference in the decay time can be discussed in three regimes of field strength, roughly
divided by

I : �e � AαN
−1/6, (54a)

II : AαN
−1/6 � �e � A3/2

α N−7/12B
−1/2
k , (54b)

III : A3/2
α N−7/12B

−1/2
k � �e, (54c)

corresponding to

I : TH,B � TH,A, (55a)

II : TH,A � TH,B ∼ T2,B � T2,A, (55b)

III : T2,A � T2,B. (55c)

In regime I, the hyperfine-mediated interaction is important both in the FID and in the Hahn echo
decay. As the excitation of nonlocal pair-flips is eliminated in the leading order at the echo time
(see figure 11(b)), the echo decay time is much longer than the FID decoherence time, namely,

T2,A/TH,A ∼
√

N�eDk/A2
α � 1, (56)

for QDs of reasonable sizes. The pair-correlation approximation, however, is not valid in regime
I, since the condition that the number of pair-flips in the timescale of TH,A be much fewer
than the number of nuclei requires N � A4/3

α �−2/3
e D

−2/3
k for the hyperfine mediated nonlocal

pair-flips and N � A4/3
α �−2/3

e D
−2/3
k for the local pair-flips driven by the intrinsic interaction

(see appendix C for estimation of the pair-flip numbers), which cannot be simultaneously
satisfied. Theories beyond the pair-correlation approximation need to be developed to explore this
regime. In regime II defined by equation (54b), the hyperfine-mediated interaction contributes
significantly to the FID but virtually nothing to the Hahn echo decay. In this regime, the decay
time measured in echo signals is much longer than the FID decoherence time as

TH,B =
√

2T2,B � T2,A. (57)
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Figure 12. (a) Comparison of the Hahn echo (dashed green line) and the FID
(solid red line) signals. The FID signal is also shown with the hyperfine-mediated
pair-flips neglected (dotted blue line). (b) The logarithm plot of (a). The QD is as
in figure 7, with Bext = 2 tesla.

In regime III, the hyperfine-mediated interaction is strongly suppressed, so the FID and the Hahn
echo decay, both determined by the intrinsic nuclear spin interaction, have essentially the same
decay profile but different decay times (differing by a factor of

√
2).

As the leading order effect of the hyperfine-mediated interaction is eliminated by spin echo,
it is critical to include the intrinsic nuclear spin interaction in studying the spin echo signals.
Note even for relatively weak external field (Bext < 0.01 T in regime I for typical QDs) where the
decoherence induced by the intrinsic interaction is relatively slow (TH,B > TH,A), the intrinsic
interaction is still important to give the correct residual decoherence effect together with the
hyperfine-mediated interaction (see equation (51)). Actually, it has been shown before that if the
intrinsic nuclear spin interaction is neglected and the T1 (electron spin-flip) process is suppressed,
the decoherence caused by the hyperfine interaction is totally removed by spin echo [23] (which
can be easily understood in the second-order term used in this paper by noticing that Ĥ+ = −Ĥ−
in equation (3) if the intrinsic interaction ĤB and ĤD are set zero). Thus it may be concluded that
only when the external field is so weak that the T1 relaxation is significant (Bext < T ∗−1

2 ∼ 0.001 T
for typical QDs [4]), can the theories neglecting the intrinsic nuclear spin interaction [17]–[22] be
applied to study spin echo signals. It should also be mentioned that even in the spin echo signals,
the hyperfine-mediated interaction plays a nontrivial role in the relatively weak field regime
and our results for spin echo signals reduce to those calculated without the hyperfine-mediated
interaction [7, 8] only in regimes II and III.

We have seen notable difference between the FID and the Hahn echo decay in all the three
field strength regimes discussed above. Such difference is indeed a consequence of the modified
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dynamics of a mesoscopic bath (the nuclear spins) under the manipulation of the quantum object
(the electron spin). In semiclassical spectral diffusion theories, the electron spin experiences
passively the “background” of fluctuating local fields. In the full quantum theory, the electron
spin dynamics actively alters the mesoscopic bath dynamics (as the nuclear spin pair-flips depends
dramatically on the electron spin state). Such a view paves the path toward manipulation of the
nuclear spin dynamics in mesoscopic QDs and control of the electron spin decoherence.

The active modification of the bath dynamics by the manipulation of the quantum object
also manifests itself in the effect of the diagonal nuclear spin interaction on the Hahn echo signal
(see equation (51)). The diagonal nuclear spin interaction contributes much less energy cost of
a pair-flip than the hyperfine interaction (Dk � Ek) and has no direct effect on the effective
Overhauser field felt by the electron spin. Thus it is expected that the diagonal interaction terms
should have little effect on the electron spin decoherence. The calculation of the FID signal in
section 3 indeed confirms such a semiclassical argument. The difference between the quantum
theory and its semiclassical counterparts becomes significant when the electron spin is under
control. In semiclassical theories, the electron spin only passively detects the fluctuating local
field which is essentially independent of the electron dynamics, so the diagonal nuclear spin
interaction should contribute no more than it does in the FID configuration. In the quantum
theory, the nuclear spin dynamics conditioned on the electron spin state is held responsible for
the electron spin decoherence. The diagonal nuclear spin interaction affects the nuclear spin
dynamics significantly and thus contributes to the decoherence when the nuclear spin dynamics
is under active control by the manipulation of the electron spin state. In the next sections, we
will see the importance of the diagonal nuclear spin interaction in determining some qualitative
decoherence features.

5. Disentanglement and recoherence

In the previous section, we have seen that the decoherence caused by the hyperfine-mediated
interaction is nearly eliminated in Hahn echo signals. Such elimination of decoherence is realized
because the hyperfine-mediated pair-flips are reversed when the electron spin is flipped at t = τ

(see figure 11(b)) and hence the pseudo-spin states |ψ±
k (t)〉 return to their original positions at

t = 2τ. As the decoherence is caused by the entanglement between the electron spin and the
nuclear spins, the elimination of decoherence, also called ‘recoherence’, can be understood in
terms of disentanglement. For nonlocal pair-flips under Hahn echo control, the disentanglement
is realized at t = 2τ when the electron spin and the pseudo-spin are brought back to a factorized
state C+|+〉|ψ+

k (2τ)〉 + C−|−〉|ψ−
k (2τ)〉 with |ψ±

k (2τ)〉 = |ψ±
k (0)〉 = | ↓〉.

In general, a pseudo-spin (or the environment) is disentangled from the electron spin (or
the quantum system in contact with the environment) whenever its states |ψ±

k (t)〉 for different
electron spin states |±〉 become identical, but need not return to the original states |ψ±

k (0)〉.
When the electron spin is flipped, the conjugate pseudo-spins exchange their pseudo-fields, so
their trajectories on the Bloch sphere will inevitably intersect, leading to the disentanglement9 .
The intersection of conjugate pseudo-spins driven by the intrinsic nuclear spin interaction is

9 A pseudo-spin is disentangled from the electron spin after a full precession cycle in free evolution. But the pseudo-
field strength χ±

k is different for different pseudo-spins, so is the disentanglement time, making it impossible for the
recoherence to occur in QDs of many nuclear spins without applying a controlling pulse. For small QDs, however,
spontaneous recovery of coherence in FID may be observed.
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actually seen in figure 11(a), which, unlike that for nonlocal pair-flips, occurs at a time different
from the echo time. The intersection time, in general, is different for different pair-flips, making
it impossible to fully recover the lost electron spin coherence. Nonetheless, in the short-time
limit (τ � E−1

k ), the distance between conjugate pseudo-spins is eliminated in the leading order
of time, simultaneously for the same group of pair-flips, as have been seen for nonlocal pair-flips.
It is straightforward to verify that for the local pair-flips, such coincident disentanglement does
take place at t = √

2τ in the single-pulse Hahn echo configuration (the magic number
√

2 can
be understood by noticing that δk ∝ τ2 at short-time limit and (

√
2τ)2 − τ2 = τ2).

With the leading order contribution vanishing, the distinguishability between conjugate
pseudo-spins at the disentanglement time (

√
2τ), including the effect of the diagonal nuclear

spin interaction, in the next leading order of τ for local pair-flips is

δk(
√

2τ) ∼ EkBkDkτ
3. (58)

Note that the residual decoherence would otherwise be of a higher order in τ if Dk were set to
zero:

δk(
√

2τ) ∼ EkB
3
kτ

4. (59)

Here we see again that the small effect of the diagonal nuclear spin interaction (the Dk term)
emerges when the nuclear spin dynamics is under control.

A semiclassical spectral diffusion theory also predicts a coherence recovery at a time earlier
than the echo time (2τ) when the random field memory time (τc) is comparable to the pulse
delay time [75]. But the semiclassical theory differs qualitatively from the quantum counterpart
on at least two aspects: (i) the recovery time depends on τc, being about τ + τc for τc < τ and
approaching 2τ when τc � τ; and (ii) the exponential index of the decoherence profile in the
spectral diffusion theory is essentially unchanged by the control. The latter difference points
directly to a fundamental shortness of the semiclassical picture: it does not take into account the
active control of the local field fluctuation by the flip of the quantum object but considers the
quantum evolution of the bath as a fluctuating field experienced passively by the quantum object.

Inclusion of contributions from both local and nonlocal pair-flips fields the pulse-controlled
decoherence in the short-time limit,

Ls
+,−(

√
2τ) ∼= e−(

√
2τ)

6
/T 6

eff,B × e−(
√

2−2)
2
τ2/T 2

2,A, (60)

where the effective decoherence time due to the residual entanglement from local pair-flips is
defined by

T −6
eff,B ∼

∑
k∈GB

E2
kB

2
kD

2
k. (61)

The electron coherence is recovered at
√

2τ, even when the pulse is applied after the coherence
has been totally lost in FID (for τ > T2,B). Such recoherence in single-system dynamics and the
spin echo in ensemble dynamics have different physical bases: the former is due to quantum
disentanglement, but the latter is due to classical refocusing of random phases. The difference
between the two is already evidenced by their different occurrence time. Figure 13(a) plots
an example of the real-time dependence of the electron spin coherence under a single-pulse
control, which demonstrates the recovery of the coherence even when the FID signal has vanished
for the chosen delay time. The contribution from the hyperfine-mediated pair-flips, which are
not reversed at

√
2τ, makes the coherence to be only partially recovered. Under a stronger
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Figure 13. (a) The electron spin coherence under the control of a short π-pulse
applied at τ = 2 µs (when the FID signal has vanished), the recoherence at

√
2τ

is pronounced while no signal survives at the echo-time 2τ. (b) The electron
spin coherence under the control of a sequence of evenly spaced pulses. (c) The
electron spin coherence under the control of a Carr–Purcell pulse sequence. The
arrows indicate positions of the short pulses. The solid blue (dotted red) lines are
calculated with(out) including the hyperfine-mediated pair-flips. The QD is as in
figure 7 with Bext = 10 tesla. No ensemble average is calculated.

magnetic field, a full recovery at
√

2τ can be realized as the hyperfine-mediated interaction is
fully suppressed (not shown).

As illustrated in figure 14(a), a sequence of pulses can force the trajectories of conjugate
pseudo-spins to cross into each other again and again. In the short-time limit (the delay time
τ � E−1

k ), an equally spaced pulse sequence eliminates the entanglement due to the local pair-
flips up to the τ2 terms, leading to a sequence of recoherence at

tn =
√

n(n + 1)τ, n = 1, 2, . . . . (62)

One can verify these magic numbers by using the quadratic dependence of δk on time and
checking that

(√
n(n + 1)τ

)2 − (nτ)2 = (nτ)2 − (√
(n − 1)nτ

)2
. The decoherence caused by

the hyperfine-mediated pair-flips under the control of evenly spaced pulses is bounded, which
can be understood from the reversed precession of the corresponding pseudo-spins. Figure 13(b)
confirms our above analysis. By using a long sequence of pulses at short intervals, the electron spin
coherence can be preserved for an arbitrarily long time until other mechanisms of decoherence
(such as phonon scattering) come into effect.

The recoherence in the control configurations discussed above, however, is not observable
in ensemble experiments, or in theories on ensemble dynamics [7, 8], since the rapid dephasing
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Figure 14. Trajectories of conjugate pseudo-spins from the intrinsic nuclear spin
interaction (a) under the control of a sequence of pulses equally spaced and (b)
under the control of a Carr–Purcell two-pulse sequence. The green bars on the
time axis represent the short pulses flipping the electron spin.

due to inhomogeneous broadening will prevent any coherence being observed except around
the spin-echo time. It is desirable to design a pulse sequence to force the recoherence from
disentanglement to coincide with a spin-echo from phase-refocusing so that the disentanglement
effect can be studied in ensemble experiments. This possibility can be seen from figure 14(b).
When the electron spin is flipped by two short pulses, for example, the disentanglement time
after the second pulse can be adjusted by changing the delay time between the two pulses. It
is shown straightforwardly that when the pulse sequence is designed such that the first pulse
is applied at t = τ and the second at t = 3τ, the disentanglement coincides with the echo time
at t = 4τ (by virtue of the change in δk, (4τ)2 − (3τ)2 − [(3τ)2 − τ2] + τ2 = 0). Obviously, the
hyperfine-mediated nonlocal pair-flips are disentangled from the electron spin at the echo time.
A two-pulse sequence so designed happens to be the famous Carr–Purcell sequence, widely used
in NMR experiments to dynamically decouple the nuclear spins. The disentanglement studied
here, however, is fundamentally different from the dynamical decoupling, as will be discussed
later in the next section.

In the rotating frame of the electron spin, the pseudo-spin states at the echo time after a
Carr–Purcell sequence is

∣∣ψ±
k (4τ)

〉 = e−iθ±
0 · σ̂/2e−iθ∓

0 · σ̂e−iθ±
0 · σ̂/2| ↓〉 = e−iθ∓

1 · σ̂/2e−iθ±
1 · σ̂/2| ↓〉 = e−iθ±

2 · σ̂/2| ↓〉, (63)

with the series of angles of rotation defined by

θ±
0 ≡ χ±

k τ, (64a)

e−iθ±
l+1· σ̂/2 ≡ e−iθ∓

l · σ̂/2e−iθ±
l · σ̂/2, (64b)

The vector θ±
l has a geometrical interpretation as the pseudo-spin effective precession angle θ±

l

about the axis along θ±
l at τ, 2τ, and 4τ for l = 0, 1 and 2, respectively (the pseudo-spin index

k is understood where no confusion is caused). Equation (64b) yields a geometrical recursion
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relation:

sin
θ±

l+1

2
= cos

θ∓
l

2
sin

θ±
l

2
+ cos

θ±
l

2
sin

θ∓
l

2
+ sin

θ∓
l

2
× sin

θ±
l

2
, (65a)

cos
θ±
l+1

2
= cos

θ∓
l

2
cos

θ±
l

2
− sin

θ∓
l

2
sin

θ±
l

2
. (65b)

The distinguishability between conjugate pseudo-spins at the echo time 4τ in the leading order
of delay time is

δ2
k
∼= 24τ6D2

k (BkEk − AkDk)
2 , (66)

for τ � E−1
k . This leads to an exp

(−ατ6
)

decay profile which has also been independently
discovered by the Das Sarma group [8]. Note the decoherence would otherwise be of a higher
order in τ if Dk is set to zero,

δ2
k
∼= 210τ8B6

kE
2
k. (67)

This demonstrates again the role of the diagonal nuclear spin interaction. We note that the
decoherence profile in the two-pulse control configuration, in particular the exponential index,
is qualitatively different from the predictions of semiclassical theories [44] in which the bath
dynamics is accounted for by a randomly fluctuating force (without being actively changed by the
manipulation of the quantum object) and the resultant decoherence exponential index is basically
unchanged by the pulse control. The recoherence at the echo time 4τ in the Carr–Purcell control
configuration is clearly demonstrated in figure 13(c), even though the signal at the Hahn echo
time 2τ after the first pulse is absent.

6. Concatenated disentanglement

6.1. Formalism and geometrical picture

We have used the iteration of effective precession angles to derive the pseudo-spin states under the
Carr–Purcell control in equations (63)–(65). Such an iteration formalism inspires us to borrow the
idea of concatenation control in dynamical decoupling recently studied for preserving coherence
in quantum computation [54]–[57]. To illustrate the basic idea, we can imagine that if χ±

k in
equation (64a) is replaced by the effective field corresponding to the precession angles at the
Carr–Purcell echo time, i.e., θ±

2 /τ, the distance between the conjugate pseudo-spins would be
eliminated to an even higher order of the delay time. Such a replacement can be done recursively,
and a concatenated pulse sequence can be so designed to control the decoherence. The unit cell
of pulses to be concatenated does not have to be the Carr–Purcell sequence, but it could be
either simpler or more complicated, or even various types of unit sequences can be interwoven
to construct a sophisticated concatenation.

To exemplify the concatenated disentanglement for decoherence control, we choose the
simplest concatenation sequence which is recursively defined by equation (64). Figure 15
illustrates how such a sequence can be concatenated to any order. The 0th order is a FID evolution
with no pulse control and the (l + 1)th order sequence is constructed by two subsequent lth

New Journal of Physics 9 (2007) 226 (http://www.njp.org/)

http://www.njp.org/


32 DEUTSCHE PHYSIKALISCHE GESELLSCHAFT

ˆ
0

ˆ kiU e χ τ±−± ≡

1 0 0
ˆ ˆ ˆU U U± ±≡

2 1 1
ˆ ˆ ˆU U U± ±≡

4 3 3
ˆ ˆ ˆU U U± ±≡

3 2 2
ˆ ˆ ˆU U U± ±≡

. . . . . .

Figure 15. Concatenated sequences of short-pulses flipping the electron spin,
represented by vertical bars.

sequences with or without one extra flipping pulse inserted in between depending on whether l

is even or odd. Accordingly, the evolution propagator is iterated as

Û±
0 = e−iχ±

k · σ̂kτ/2 ≡ e−iθ±
0 ·σ̂/2, (68a)

Û±
l+1 = Û∓

l Û±
l ≡ e−iθ±

l+1·σ̂/2. (68b)

For a pictorial understanding of the concatenated control of decoherence, we rewrite the
effective precession angles as

sin
θ±

l

2
≡ n±

l ≡ Rl ± rl. (69)

Without confusion, the vectors n±
l will also be referred to as effective precession angles since

n±
l ≈ θ±

l /2 for small precession angles. As depicted in figure 16(a), the conjugate precession
angles are decomposed into the common part Rl and the difference part rl. Then, the recursion
in equation (65) is rewritten as

r0 = 1

2
sin

χ+
kτ

2
− 1

2
sin

χ−
k τ

2
, (70a)

R0 = 1

2
sin

χ+
kτ

2
+

1

2
sin

χ−
k τ

2
, (70b)

R1 = cos
χ−

k τ

2
sin

χ+
kτ

2
+ cos

χ+
kτ

2
sin

χ−
k τ

2
, (70c)

rl = 2Rl−1 × rl−1, (l � 1), (70d)

Rl = 2Rl−1

√
1 − R2

l−1 − r2
l−1, (l � 2). (70e)
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Figure 16. (a) The effective precession vectors for conjugate pseudo-spins are
decomposed into the common component and the difference part. (b) The iteration
of the effective precession vectors from the lth order to the (l + 1)th order
concatenation. (c) The pseudo-fields are decomposed into the perpendicular and
the parallel components.

The distance δk is in the same order of the difference part. Particularly, for the lth order
concatenation, the distance at τl ≡ 2lτ is

δ2
l = 1 − ∣∣〈ψ−

k |ψ+
k 〉
∣∣2 = 1 −

∣∣∣∣
〈
↓

∣∣∣∣
(√

1 − n2
l + in−

l · σ̂

)(√
1 − n2

l − in+
l · σ̂

)∣∣∣∣ ↓
〉∣∣∣∣

2

= 1 −
∣∣∣∣
〈
↓

∣∣∣∣1 − n2
l + n−

l · n+
l − i2rl · σ̂

√
1 − n2

l − i
(
n+

l × n−
l

) · σ̂

∣∣∣∣ ↓
〉∣∣∣∣

2

= 4r2
l

[
1 − r2

l −
(

zl+1Rl − zl

√
1 − R2

l − r2
l

)2
]

, (71)

for l � 1, where nl ≡ n+
l = n−

l = √
R2

l + r2
l and zl is the z-component of rl/rl.

6.2. Short-time behaviours

To gain some insight into the concatenated control of decoherence, first consider the short-time
limit τ � E−1

k . There, the recursion of the rotation angles has an intuitive form as

Rl ≈ 2lR0 ≈ 2lτ
χ+

k + χ−
k

4
= (2Bk, 0, Dk)

τl

2
, (72a)

r0 ≈ (
χ+

k − χ−
k

) τ

4
= (2Ak, 0, Ek)

τ

2
, (72b)

rl ≈ 2lR0 × rl−1, (l � 1), (72c)

which holds until the precession angle Rl approaches the order of unity at a threshold order of
concatenation l0 given by

l0 ≈ − log2(Bkτ). (73)

The distinguishability between conjugate pseudo-spins in the leading order of delay time is

δ2
l
∼= 4r2

l

(
1 − z2

l

)
, (74)
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determined by the difference between the conjugate precession vectors. The concatenated control
can be understood in the geometrical picture shown in figure 16(b). In the FID (the 0th order
concatenation), the common part of the precession angles R0 is roughly determined by the nuclear
spin interaction strength times the time, i.e. Bkτ, which is much less than 1 in the timescale of
interest, and the difference part r0 is roughly the precession angle given by the hyperfine energy
cost Ek. In the 1st order concatenation, the common part R1 is approximately in the same direction
as R0 with the angle roughly doubled if Ekτ � 1, and the difference part r1 is perpendicular
to both R0 and r0 with the amplitude reduced by a factor of 2R0 from r0. Staring from the 2nd
order concatenation, the common part Rl will be along the same direction as the 1st order one
R1 and the difference part rl will be alternatively in the two orthogonal directions r1 and r2,
both perpendicular to the common part direction Rl. By each further level of concatenation, the
common part is increased by a factor of two and the difference is reduced by a factor of 2Rl for
l < l0. Thus each level of concatenation will reduce the difference between effective conjugate
precession angles by the order of the delay time times the nuclear spin interaction strength and
remove the decoherence accordingly, until the controlling effect is saturated at the threshold
level l0.

With the short-time approximation of the precession angles given in equation (72), the
distinguishability between conjugate pseudo-spins in the leading order of τ is

δ2
l
∼= 4τ2l+22l(l−1)

(
1 − z2

l

) (
4B2

k + D2
k

)l−1
(BkEk − AkDk)

2 , (75)
with

z2
l =

{
0 (l = 1, 3, . . .),

4B2
k

(
4B2

k + D2
k

)−1
(l = 2, 4, . . .).  

(76)

Alternatively, for a fixed time t, a certain order of concatenation control with τ = t/2l gives

δ2
l
∼= 4t2l+22−l(l+3)

(
1 − z2

l

) (
4B2

k + D2
k

)l−1
(BkEk − AkDk)

2 , (77)

which can be suppressed to an arbitrary power of the echo time t times the nuclear spin interaction
strength under the condition

Rl ∼ Bkt � 1. (78)

The electron spin coherence under control is

Ls
+,−(τl) ∼=

∏
k

e−δ2
l /2 ∼= e−τ2l+2

l /T 2l+2
(l) , (79)

decaying exponentially with powers of τ at 2, 4, 6, 8, . . ., for the concatenation order 0, 1,
2, 3, . . ., respectively.

To show the effect of the diagonal nuclear spin interaction in the decoherence control, we
note that in equation (76) z2m = 1 if Dk = 0 and thus δ2

k vanishes in the given order. In this
case, the distinguishability between the conjugate pseudo-spins in the next leading order for
l = 2m is

δ2
l
∼= 4R2

l r
2
l

∼= τ2l+42l(l+3)E2
kB

2l+2
k . (80)

So when Dk is put to zero, the coherence decays exponentially with powers of τ at 2, 4, 8, 8, 12,
12, . . . for concatenation order 0, 1, 2, 3, 4, 5, . . ., respectively.

The effective preservation of the coherence by concatenated control is demonstrated by the
numerical simulations presented in figure 17. Note that the coherence shown in the figure is at
the time 2lτ which doubles at every order of concatenation. The role of the diagonal part of the
nuclear spin interaction is demonstrated (compare figures 17(b) and (c)).
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Figure 17. (a) The electron spin coherence under the lth order concatenation
control, l = 0, . . . , 5, as functions of the pulse delay time τ. (b) The logarithm
plot of (a). (c) The same as (b), but with the diagonal nuclear spin interaction put
to zero. The QD is as in figure 13.

6.3. Controlling small parameters

The suppression of the decoherence by concatenated control, however, does not depend on
the short-time condition τ � E−1

k . This point can be seen from equation (70): an iteration of
concatenation suppresses the decoherence further as long as the common component of the
conjugate precession angles Rl � 1, without requiring Ekτ � 1. Since R0 is of the order of the
nuclear spin interaction strength times the delay time (Bkτ), the condition for a concatenated
sequence to be efficient in eliminating the decoherence is that the delay time is much shorter
than the inverse strength of the nuclear spin interaction, i.e.

τ � B−1
k , D−1

k , A−1
k , (81)

which is a much less stringent condition than t � E−1
k . To calculate the electron spin coherence

under this relaxed ‘short-time’ condition, we decompose the conjugate pseudo-fields in such a
way that

χ+
k = a + b, (82a)

χ−
k = a − c, (82b)

New Journal of Physics 9 (2007) 226 (http://www.njp.org/)

http://www.njp.org/


36 DEUTSCHE PHYSIKALISCHE GESELLSCHAFT

with a ⊥ b ‖ c, as depicted in figure 16(c). Then, we are able to separate different timescales
according to the orders of magnitude of different components. We notice that a and |b − c| are
of the order of the nuclear spin interaction strength and b and c are of the order of the hyperfine
energy cost Ek. Within timescales given by equation (81), the precession angles in the leading
order of the nuclear spin interaction strength are

r0
∼= sin

(b + c) τ

4
, (83a)

R0
∼= (b − c) τ

4
cos

(b + c) τ

4
+

aτ

2
sinc

(b + c) τ

4
, (83b)

Rl
∼= 2l−2(b − c) τ + 2l−1aτsinc

(b + c) τ

2
, (l > 0), (83c)

rl
∼= 2l(l−1)/2τl+1 a(b + c)

4
sinc2 (b + c)τ

4

[
(b − c)2

4
+ a2sinc2 (b + c)τ

2

](l−1)/2

(83d)

� 2l(l−1)/2τl+1 a

4

∣∣χ+
k − χ−

k

∣∣ ∣∣∣∣χ+
k + χ−

k

2

∣∣∣∣
l−1

∼= 2
l(l−1)

2 τl+1 |EkBk − AkDk|
(
4B2

k + D2
k

)l−1/2
, (l > 0), (83e)

under the condition Rl � 1. The z-component of the direction of rl is

z2
l
∼=




0 (l = 2m + 1),

4B2
ksinc2 (Ekτ)

4B2
ksinc2 (Ekτ) + D2

k

(l = 2m + 2).
(84)

The distinguishability between conjugate pseudo-spins δ2
k is determined by equation (71). The

decoherence is estimated accordingly.
It is obvious that the small parameter controlling the maximum delay time for a

concatenation control to be efficient is the nuclear spin interaction strength
√

4B2
k + D2

k instead
of the object–bath interaction strength (i.e. the hyperfine energy cost Ek). The threshold
concatenation level l0, beyond which an additional level of concatenation cannot suppress the
decoherence further, is determined by the condition that the precession angle approaches 1,
i.e. Rl0 � 1. With the precession angle given by

Rl
∼= 2l−1τ

√
4B2

ksinc2 (Ekτ) + D2
k � 2l−1τ

√
4B2

k + D2
k, (85)

the threshold concatenation level is estimated as

l0 ∼ − log2

(
τ

√
4B2

k + D2
k

)
, (86)

also determined by the nuclear spin interaction strength. A close examination of figure 17(a)
reveals that the decoherence suppression is still effective even when the pulse delay time τ is
substantially longer than the typical value of the inverse hyperfine energy cost E−1

k , which is
about 0.5 µs for the QD considered.
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6.4. Coherence stabilization

The concatenated pulse sequence can be repeated. The propagator of a pseudo-spin for n repeated
lth-order concatenation sequences is

Û±
l,n =

(
Û±

l

)n

= exp
(−inθ±

l · σ̂/2
)
. (87)

Note that in implementing the pulse sequence for repeated concatenation, a π-pulse should be
inserted between two unit sequences if l is an odd number. The common and difference parts of the
conjugate precession angles Rl,n and rl,n can be defined similarly to those for unit concatenation
sequences. The precession vectors θ±

l,n ≡ nθ±
l do not change their directions with increasing

number of repeated units but only the angle of rotations grows linearly with n. Therefore,

rl,n/Rl,n = rl/Rl
∼= rl−1. (88)

Since Rl,n = | sin θ+
l,n/2 + sin θ−

l,n/2|/2 � 1, the distinguishability between conjugate pseudo-
spins given by equation (71) is bounded from above by

δ2
l,n � 4r2

l,n � 4 (rl/Rl)
2 ∼= 4r2

l−1. (89)

Since by each order of concatenation until the threshold level is reached, the common precession
angle Rl is increased by a factor two and the difference part rl is suppressed by a factor of Rl � 1,
the ratio rl/Rl can be made arbitrarily small. In the mesoscopic system, the number of excitation
modes (pseudo-spins) is finite, so the coherence under repeated concatenation control is bounded
from below by

L+,− (nτl) � exp

(
−2

∑
k

r2
l /R

2
l

)
∼= L+,− (τl−1) . (90)

The summation
∑

k 2r2
l /R

2
l can be made arbitrarily small by choosing a small delay time and

a sufficiently deep concatenation level, which means the electron spin coherence is stabilized
virtually without decoherence. The coherence after n units of lth order concatenation sequences
is no less than that after a single unit of (l − 1)th order concatenation sequence for l>1. The
analysis above is verified by numerical simulations presented in figure 18.

7. Summary and discussions

We have studied the electron spin decoherence in a mesoscopic bath of nuclear spins in
semiconductor QDs. For QDs of interest in experiments, the electron–nuclear hyperfine
interaction is much stronger than the nuclear spin interactions, so the electron spin and those
nuclear spins in direct contact with the electron can be well isolated from the environment as a
closed quantum system in the timescale of interest, giving the definition of a mesoscopic system.

When the longitudinal spin relaxation is absent (suppressed here by a moderate to strong
magnetic field �0.1 T and a low temperature � 1 K), pure dephasing (or transverse relaxation)
induced by the nuclear spin bath is the dominant cause for the loss of electron quantum coherence.
In the quantum theory, decoherence is a consequence of the entanglement between the quantum
object and the bath established by the evolution of bath along bifurcated pathways in the Hilbert
space for different basis states of the quantum object. By contrast, semiclassical spectral diffusion
theories ascribe the decoherence to accumulation of a random phase from a fluctuating local
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Figure 18. The electron spin coherence under the control of repeated units of
concatenated sequences, as functions of the number of units for a fixed pulse
delay time τ = 0.2 µs. The QD is under the same condition as in figure 17.

field. The nuclear spin dynamics, which is conditioned on the electron spin basis states, can be
shepherded by manipulation of the electron spin. In particular, when the electron spin is flipped,
the bifurcating nuclear spin pathways will exchange their evolution directions in the Hilbert
space and could intersect at a later time, leading to the disentanglement of the electron from the
nuclei and hence the restoration of the coherence even after it has been totally lost to the nuclear
bath. Such recoherence by disentanglement is fundamentally different from spin echoes which
result from re-focusing of random phases.

The solution to the many-body nuclear bath dynamics relies on four essential conditions.
(i) The QD size is in the mesoscopic regime. (ii) The external field is much stronger than the
hyperfine interaction. (iii) The temperature is low for the electron spin but high for the nuclear
spins. (iv) The timescale considered is much shorter than the inverse nuclear interaction strength.
Such conditions are realistic. They make possible two important simplifications in theory. Firstly,
the electron spin dephasing in ensemble dynamics is factorized into two factors, namely, one due
to the inhomogeneous broadening, and the other due to the entanglement between the electron
spin and the nuclear spins. Secondly, the nuclear spin dynamics in the timescale of interest
is approximated as independent excitations of pair-wise flip–flops. The solution of the bath
quantum dynamics provides a simple geometrical basis for the design of pulse sequences for
recoherence. The controllability of the mesoscopic bath dynamics, however, is a rather general
concept independent of the simplifications made in the present paper.

A close examination of the single-system dynamics free of the inhomogeneous broadening
reveals a wealth of phenomena in the electron spin decoherence. For example, a coherence
recovery at a time different from the spin echo time would have been totally eclipsed in ensemble
dynamics, since the dephasing due to inhomogeneous broadening is usually faster by orders of
magnitude than the entanglement-induced decoherence. It is also shown that the single-pulse
Hahn echo signals do not measure the electron spin decoherence in FID configuration: firstly,
the decoherence caused by hyperfine-mediated nuclear pair-flips has a strong effect on the FID
when the external field is not too large, but it is removed from the Hahn echo signal due to
disentanglement; secondly, the decoherence by the intrinsic nuclear spin interaction is also
partially suppressed, which results in a Hahn-echo decay time approximately

√
2 times the
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FID time due to the intrinsic interaction. The decoherence behaviour in single-system dynamics
(such as the recoherence at

√
2τ) could eventually be directly observed in experiments if the

inhomogeneous broadening can be filtered out, e.g. by a projective measurement of the local
Overhauser field [20], [67]–[69].

To observe the recoherence by disentanglement in ensemble experiments [40, 71], pulse
sequences are designed to force the disentanglement to coincide with a spin echo. The simplest
solution is the Carr–Purcell sequence, which has one pulse at τ and another at 3τ and forces
the disentanglement to take place at the echo time 4τ. More sophisticated designs such as
concatenated sequences can be employed to suppress the decoherence to an arbitrary order
of the pulse delay time in units of the inverse nuclear interaction strength, and a repetition of
the concatenated sequences can preserve the electron spin coherence until other decoherence
mechanisms (such as phonon scattering) become significant.

The design of concatenated pulse sequences for disentanglement resembles the dynamical
decoupling schemes which have been developed in decades for NMR spectroscopies [48, 50, 51]
and recently studied for quantum computation [54, 55, 57]. The disentanglement schemes exploit
the controlling power of pulse sequences in a subtly different way from the dynamical decoupling
schemes: the latter uses short pulses to flip the quantum object frequently so that the object–bath
interaction is dynamically averaged to zero, while the former does not seek to eliminate the
effective coupling but rather focuses on controlling the evolution of the bath wavefunction.
For example, for local nuclear spin pair-flips in the single-pulse control configuration, the
effective interaction Ŝz

e ⊗ Ĥeff at the disentanglement time
√

2τ, defined by Ĥeff ≡ Ĥ+
eff − Ĥ−

eff

and e−iĤ±
eff

√
2τ ≡ e−iĤ∓(

√
2−1)τe−iĤ±τ , does not vanish even in the leading order of the hyperfine

coupling. This is also the case for the disentanglement under the control of equally spaced
pulses. One may question why a nonzero effective object–bath interaction could lead to vanishing
decoherence. The reason is that the control steers the wavefunction evolution and the initial state
of the bath is of some special form (namely, the nuclear spin states at the temperature under
consideration possesses no off-diagonal coherence). The disentanglement time is in general
dependent on the initial state (a universal disentanglement scheme independent of the initial
state is only possible when the effective system–bath coupling vanishes). The dependence of
the disentanglement on the initial state is implied in the control by evenly separated pulses
shown in figure 14(a): for instance, if the nuclear spins present at

√
2τ are set as the initial state

(which possesses off-diagonal two-spin coherence), the disentanglement after the electron spin
flip at τ0 would occur at (

√
3 − 1)(

√
2 + 1)τ0 (on the contrary, for initial states |J 〉 which has

no off-diagonal coherence, the disentanglement occurs at
√

2τ0). It would be very interesting to
study the decoherence and the disentanglement for spin baths with certain initial off-diagonal
coherence such as in quantum memory applications [77].

Even though the concatenated disentanglement does cause the effective electron–nuclear
coupling to vanish, the difference from the dynamical decoupling is still unambiguously
evidenced by their different controlling small parameters. The controlling small parameter in
dynamical decoupling is the object–bath interaction strength, and the pulse delay time should
be much shorter than the inverse of that strength. In the dynamical disentanglement, the object–
bath interaction strength is a quite irrelevant parameter, but the short-time condition is given
by the bath interaction. Furthermore, in concatenated dynamical decoupling, the decoherence
is eliminated in orders of the system-interaction strength times the pulse delay time, but in the
disentanglement, the decoherence is suppressed in orders of the bath interaction strength times
the delay time.
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We conclude this paper by pointing out the limitations of the disentanglement scheme as
an alternative to other methods of preserving coherence of quantum states such as dynamical
decoupling. Firstly, the disentanglement method depends on the initial bath state, and hence
the specific design of pulse sequences may vary from case to case (though to many commonly
encountered cases such as thermalized baths the pulse sequences studied in this paper may be
straightforwardly applied). Secondly, the disentanglement is possible only when the coherence of
the mesoscopic system consisting of the quantum object and the bath is not lost to the macroscopic
environment. Notwithstanding these limitations, the concept of disentanglement could be useful
for small quantum systems, such as spins in molecules [77] and spins of nitrogen-vacancy centres
in diamonds [78]. It should also be mentioned that even though the discussions in this paper
have been largely facilitated by the pair-correlation approximation in treating the many-body
nuclear spin dynamics, the disentanglement is a general notion independent of the employed
approximation.
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Appendix A. Factorization of single-system dynamics and inhomogeneous broadening

The nuclear spin dynamics is basically determined by the excitation spectra of the pseudo-spins
when the bath size is large enough. The excitation spectra for different nuclear spin configurations
|J 〉 should be the same except for a relative variance in the order of 1/

√
N according to the central

limit theorem in statistics. Here we give a numerical test of the single-system dynamics for a few
initial nuclear spin configurations randomly selected from the thermal ensemble. The results are
shown in figure A.1. Remarkably, the coherence for four initial states randomly selected from
the thermal ensemble is visually indistinguishable, both in the FID regime (t < 0.5 µs) and after
the controlling pulses are applied (t > 0.5 µs). The relative deviation between different curves
is consistent with the estimate by the central limit theorem.

Appendix B. Boundary of mesoscopic nuclear spin bath

Intuitively, the nuclear spins in direct contact with the electron spin can be taken as the mesoscopic
bath. The boundary of the bath is roughly defined by the condition that the hyperfine interaction
is stronger than the nuclear spin interaction for nuclei within the bath, and otherwise for those
without the bath. The interaction between the nuclear spins within and without the bath across
the boundary, however, could make this definition somehow arbitrary. One can define a larger
spin bath by including one or more layers of nuclei outside the boundary. Since the nuclear spin
interaction is much weaker than the hyperfine interaction, the cross-boundary interaction should
be unimportant in timescales of interest. Here, we present the numerical test of the dependence of
the electron spin decoherence on the choice of the boundary of the mesoscopic nuclear spin bath,
particularly by examining the real-time behaviour under the Carr–Purcell control. The result in
figure B.1 confirms the assumption that the slight ambiguity in defining the mesoscopic bath as
a closed system is unimportant.
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Figure A.1. (a) The electron spin coherence under the control of a Carr–Purcell
pulse sequence, for various initial nuclear spin states (indicated by arrows
in figure 4): |J1〉 with local Overhauser field EJ1 = −0.5�∗

2 (dot-dashed red
line), |J2〉 with EJ2 = 0 (solid black line), |J3〉 with EJ1 = 0.5�∗

2 (dotted blue
line), and |J4〉 with EJ4 = �∗

2 (dashed green line). The four lines are indeed
indistinguishable in the figure. (b) The deviation of the coherence for various
initial states from that for the state |J1〉, �L+,−(t) ≡ |〈Jn|eiĤ−te−iĤ+t|Jn〉| −
|〈J1|eiĤ−te−iĤ+t|J1〉|, amplified by 1000 times. The InAs QD is of size 34 × 34 ×
3 nm3, at a temperature of 1 K, and under an external field of 10 tesla.

Appendix C. Pair-flip numbers

The number of pair-flips can be calculated with the pseudo-spin model, as an a posterior check
of the pair-correlation approximation. The general formalism is [4]

Nflip(t) ≡ max
±

∑
k

∣∣〈↑ |ψ±
k (t)〉∣∣2 ≈

∑
k

∣∣〈↑ |ψ+
k (t)〉

∣∣2
. (C.1)

To be specific, let us consider the pair-flip number under concatenated control. With the notations
defined in section 6, the pair-flip number under the lth order concatenation control is

N
(l)
flip (τl) =

∑
k

[(
n+

l

)2

x
+
(
n+

l

)2

y

]
, (C.2)

where (n+
l )x and (n+

l )y are the x- and y-component of the precession vector n+
l defined in

equation (69), respectively, and τl ≡ 2lτ. With the condition τl � B−1
k , the results in the leading

order of the nuclear spin interaction strength are

N
(0)
flip (τ) ∼= N

(0)
flip,A (τ) + N

(0)
flip,B (τ) , (C.3a)

N
(0)
flip,A (τ) ∼=

∑
k∈GA

A2
kτ

2sinc2 Ekτ

2
� A4

ατ
2

N2�2
e

, (C.3b)
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Figure B.1. (a) The electron spin coherence under the control of a Carr–Purcell
pulse sequence, for various choices of boundary of the nuclear spin bath: for the
dashed red, solid black, and dotted blue lines, the boundary is set 0, 1 and 3
layers of unit cells outside the boundary defined by the QD potential walls. The
three lines are indistinguishable in the figure. (b) The deviation (amplified by 100
times) of the coherence for various choices of the bath boundary, referenced to
the first choice of boundary. The QD is as in figure A.1.

N
(0)
flip,B (τ) ∼=

∑
k∈GB

B2
kτ

2sinc2 Ekτ

2
� NB2

kτ
2, (C.3c)

N
(l>0)
flip (τl) ∼=

∑
k∈GB

B2
kτ

2
l sinc2 (Ekτ) � NB2

kτ
2
l . (C.3d)

Here the number of local pair-flips and that for hyperfine-mediated nonlocal pair-flips in FID
configuration are identified with the subscriptsB andA, respectively.As illustrated in figure 11(b),
the pseudo-spin precession for nonlocal pair-flips is reversed when the electron spin is flipped,
so under the concatenated control the number of hyperfine-mediated pair-flips will oscillate
periodically, with the maximum value N

(0)
flip,A (τ) at (2n + 1)τ and minimum value 0 at 2nτ. At

the spin echo time τl for l > 0, the number of pair-flips is contributed by the intrinsic nuclear spin
interaction. The number of pair-flips is plotted in figure C.1 for a typical QD in the Carr–Purcell
control configuration, showing the features discussed above.

To justify the pair-correlation approximation, the small pair-flip number condition

N2
flip � N, (C.4)

is to be fulfilled (see appendix D). Thus, the criteria for the timescales τ and τl being short are
given by

NB4
kτ

4
l � 1, (C.5a)

N−5�−4
e A8

ατ
4 � 1, (C.5b)
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Figure C.1. (a) The electron spin coherence in the Carr–Purcell control
configuration. (b) The number of pair-flips due to the intrinsic nuclear spin
interaction (dotted red line) and that due to the hyperfine-mediated interaction
(solid blue line, amplified by 10 times). The InAs QD is as in figure A.1 with
B = 2 tesla.

for consideration of the intrinsic interaction and the hyperfine-mediated interaction, respectively.
For an InAs QD containing about 105 nuclei under an external field of Bext ∼ 1 tesla, the valid
timescales is estimated to be

τl � 100 µs, (C.6a)

τ � 10 µs. (C.6b)

A natural timescale of interest in experiments is the decay time of the Hahn echo signal,
which is estimated from equation (43b) and (50) to be

TH,B ∼ N5/12B
−1/2
k A−1/2

α . (C.7)

This timescale together with equation (C.5) sets ranges for the field strength and the QD size
where the pair-correlation approximation is valid:

N8/3B2
kA−2

α � 1, (C.8a)

N−10/3�−4
e B−2

k A6
α � 1, (C.8b)

as schematically shown in figure C.1.

Appendix D. Error estimation for pair-correlation approximation

To estimate the error of the pair-correlation approximation, we express the exact and the
approximate nuclear spin wavefunctions as

|J ±
exact(t)〉 = |J ±

exact,uncorr〉 + |J ±
exact,corr〉, (D.1a)
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Figure C.2. Schematics for the range of the QD size and the field strength
(shadowed area) where the pair-correlation approximation is justified in the
timescales of interest in the single-pulse Hahn echo configuration. The upper
and lower bounds set limits on the number of the intrinsic local pair-flips and on
that of the hyperfine-mediated nonlocal pair-flips, respectively.

|J ±
PCA(t)〉 = |J ±

PCA,uncorr〉 + |J ±
PCA,corr〉, (D.1b)

respectively, where |J ±
exact,corr〉 and |J ±

PCA,corr〉 denote the wavefunctions containing correlated
pair-flips, and |J ±

exact,uncorr〉 and |J ±
PCA,uncorr〉 are the parts containing uncorrelated pair-flips. The

evolution starts with a randomly chosen nuclear spin state |J 〉. The uncorrelated part of the
wavefunction in the exact solution and that in the approximation are determined by the same
Green’s function Ĝ0(t, t

′) and by the probability amplitudes at the initial state C±
PCA,J (t′) and

C±
exact,J (t′) as

|J ±
exact,uncorr〉 =

∫
Ĝ0(t, t

′)C±
exact,J (t′)|J 〉dt′, (D.2a)

|J ±
PCA,uncorr〉 =

∫
Ĝ0(t, t

′)C±
PCA,J (t′)|J 〉dt′. (D.2b)

After a few pair-flips have occurred while still well before the correlated part of the wavefunction
becomes significant, the probability amplitude of the initial state |J 〉 decays already to zero. So
the amplitudes at the initial state are essentially the same in the exact and the approximate
solutions. Consequently, the wavefunctions containing only uncorrelated pair-flips are equal in
the two solutions

|J ±
exact,uncorr〉 = |J ±

PCA,uncorr〉. (D.3a)

Thus the error of the pair-correlation approximation in calculating the electron spin coherence
correlation is estimated to be

δLs
+,− ∼ |〈J −

exact,corr|J +
exact,corr〉 − 〈J −

PCA,corr|J +
PCA,corr〉| � Pcorr, (D.4)

where Pcorr is the probability of having correlated pair-flips. When the number of pair-flips
Nflip � N, Pcorr ∼ 1 − exp

(−qN2
flip/N

)
(q is a factor close to the number of nearest neighbours

of a nuclear spin).
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