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Inversion symmetry breaking allows contrasted circular dichroism in different k-space regions, which takes
the extreme form of optical selection rules for interband transitions at high symmetry points. In materials where
band edges occur at noncentral valleys, this enables valley-dependent interplay of electrons with light of
different circular polarizations, in analogy to spin dependent optical activities in semiconductors. This discov-
ery is in perfect harmony with the previous finding of valley contrasted Bloch band features of orbital magnetic
moment and Berry curvatures from inversion symmetry breaking �D. Xiao, W. Yao, and Q. Niu, Phys. Rev.
Lett. 99, 236809 �2007��. A universal connection is revealed between the k-resolved optical oscillator strength
of interband transitions, the orbital magnetic moment and the Berry curvatures, which also provides a principle
for optical measurement of orbital magnetization and intrinsic anomalous Hall conductivity in ferromagnetic
systems. The general physics is demonstrated in graphene where inversion symmetry breaking leads to valley
contrasted optical selection rule for interband transitions. We discuss graphene based valley optoelectronics
applications where light polarization information can be interconverted with electronic information.
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I. INTRODUCTION

In atoms, optical transition selection rules are determined
by orbital magnetic moments of the atomic levels. Bloch
bands in solids can inherit these rules from their parent
atomic orbits. A well-known example is the optical transition
between s-like conduction and p-like valance bands in semi-
conductors. Strong spin-orbit coupling in the p bands mixes
the orbital moment with spin moment, and as a result, spin
degree of freedom distinguishes two groups of electrons in
their response to light with opposite circular polarizations.
This forms the basis for spin optoelectronics applications in
semiconductors.1–3

In this paper, we explore an entirely different origin of
selection rules and circular dichroism for optical interband
transitions in solids. In addition to the intracellular current
circulation of the parent atomic orbits, orbital magnetic mo-
ment of Bloch electrons has a contribution from intercellular
current circulation governed by bulk symmetry properties.
We show that this contribution is also tied to optical circular
dichroism. When inversion symmetry is broken, contrasted
circular dichroism is allowed in different regions of the Bril-
louin zone, which takes the extreme form of optical transi-
tion selection rules at high symmetry points.

We illustrate this general physics in graphene, the mono-
layer carbon honeycomb lattice recently realized in free-
standing forms.4–7 The isolated graphene crystallite is a zero-
gap semiconductor: the conduction and valence bands
conically touch each other, forming two inequivalent valleys
at the corners of the first Brillouin zone. Inversion symmetry
breaking is being exploited as a powerful approach toward
band-gap engineering,8–13 motivated by the need of semicon-
ductor energy gap for graphene based logic devices.7 In
graphene single layer, inversion symmetry is broken when
the two sublattices become inequivalent. This effect is gen-
erally expected in epitaxially grown graphene,7 where stag-
gered sublattice potential can arise either directly from the
substrate such as BN,8 or from a carbon buffer monolayer

covalently bonded to SiC substrate.9,14 Recent angular re-
solved photoemission spectroscopy has identified mid-
infrared band gap in graphene epitaxially grown on SiC,9

attributed to this mechanism. In graphene bilayer, experi-
ments and theories have revealed an energy gap continuously
tunable from zero to mid-infrared by an interlayer gate bias
that breaks the inversion symmetry.10–13 We find that at the
center of the two inequivalent valleys, interband transitions
couple exclusively to optical field of opposite circular polar-
izations.

Besides graphene, many conventional semiconductor ma-
terials have noncentral k-space valleys, e.g., Si and AlAs.
Valley based electronics applications have recently attracted
great interests where this extra degree of freedom is sug-
gested as an information carrier.15–17 In conjugation with the
progressively achieved advances in piezoelectric control and
magnetic control of valley degree of freedom,18–20 valley
contrasted optical circular dichroism from inversion symme-
try breaking creates an entirely new possibility to optically
address the valley physics. This may form the basis of valley
based optoelectronics applications in graphene and conven-
tional semiconductors, in direct analogy to the well devel-
oped spin based optoelectronics.1–3

This paper is organized as follows: In Sec. II, a universal
connection is revealed between the k-resolved optical oscil-
lator strength of interband transitions and the band properties
of orbital magnetic moment and Berry curvatures. We show
how inversion symmetry breaking allows contrasted circular
dichroism for interband transitions in different regions of the
Brillouin zone, which becomes a rigorous optical selection
rule at high symmetry points. In Sec. III, we demonstrate the
valley contrasted optical selection rule in two qualitatively
different graphene systems with broken inversion symmetry,
i.e., single layer with staggered sublattice potential and bi-
layer with an interlayer gate bias. In Sec. IV, we discuss
graphene based valley optoelectronics applications where
light polarization information can be interconverted with
electronic information. In the Appendix, we give two circular
dichroic sum rules for optical measurement of orbital mag-
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netization and intrinsic anomalous Hall conductivity in fer-
romagnetic systems, which are direct consequence of the
connection between interband optical transitions and the
band topological properties discussed in Sec. II.

II. GENERAL THEORY

We consider a nondegenerate band c for which the intra-
cellular circulation currents from the parent atomic orbit is
assumed absent.21 Orbital magnetic moment contributed by
the intercellular current circulation can be given from the
k ·p analysis,22

m�k� � − i
e�

2me
2 �

i�c

Pci�k� � Pic�k�
�i�k� − �c�k�

. �1�

In the above, P�
ci�k���uc,k�p̂��ui,k	 is the interband matrix

element of the canonical momentum operator, ��k� is the
band dispersion, and �uk	 the periodical part of the Bloch
function.22,23 It is worth noting that this intercellular current
circulation is responsible for the anomalous g factor of elec-
tron in semiconductors: the two Bloch states with opposite
spin at � point form a Kramer’s pair with opposite m which
renormalize the spin Zeeman energy.22

Now we consider the simplest situation of a two band
model, where m�k� will have identical value in the upper and
lower bands as evident from Eq. �1�. The projection of m�k�
along the light propagation direction �ẑ� can be expressed as

− 2
m�k� · ẑ

�B
=

�P+�k��2 − �P−�k��2

me��c�k� − �v�k��
, �2�

where the right hand side is the difference in k-resolved os-
cillator strength of �+ and �− circular polarizations.24 P	

�Px
cv	 iPy

cv and �B� e�
2me

is the Bohr magneton refers to the
quantity �B only. Furthermore, with the equality for the po-
larization averaged oscillator strength,

�P+�k��2 + �P−�k��2

2me��c�k� − �v�k��
= meTr
1

2

�2�c�k�
�2 � k� � k


� , �3�

we find, for the interband transition at a k-space point, the
degree of circular polarization is given by

��k� �
�P+�k��2 − �P−�k��2

�P+�k��2 + �P−�k��2
= −

m�k� · ẑ

�B
��k�

, �4�

where �B
��k� is the effective Bohr magneton with the bare

electron mass replaced by the isotropic part of the effective
mass. Generalization of these relations to many bands is
straightforward, where the contribution from each pair of
bands to the k-resolved oscillator strength and orbital mag-
netic moment assumes a similar relation.

Such connections open up the possibility to engineer op-
tical circular dichroism in given bands through intercellular
circulation currents determined by bulk symmetry properties.
In the presence of time reversal symmetry, two Bloch states
with opposite crystal momentum form a Kramer’s pair with
opposite orbital moment, and hence, the overall circular di-
chroism vanishes. On the other hand, inversion symmetry

dictates that a Bloch state at k also has a counterpart at −k
with identical orbital moment. Thus, inversion symmetry
breaking is a necessary condition for contrasted circular di-
chroism in different regions of the Brillouin zone. At high
symmetry points where the Bloch states are invariant under a
q-fold discrete rotation about the light propagation direction:

R� 2�
q , ẑ��c�v�,k	=e−i

2�
q

lc�v��c�v�,k	, an azimuthal selection
rule lv	1= lc+qN is expected for interband transitions by
light of �	 circular polarization.

Berry curvature is another property that reflects handed-
ness of Bloch electrons, and it always accompanies the inter-
cellular current circulations in the Bloch band,23

��k� � i
�2

me
2 �

i�c

Pci�k� � Pic�k�
��c�k� − �i�k��2 . �5�

While moving in an in-plane electric field, the carriers ac-
quire an anomalous velocity in the transverse direction pro-
portional to the Berry curvature, the charge, and the field
giving rise to the Hall effect.23,25 For the two band model
discussed above, we simply find,

��k� = −
m�k� · ẑ

�B
��k�

= −
��k� · ẑ

�B
��k�

��c�k� − �i�k��
e

2�
, �6�

where m�k� and ��k� both stand for their value in the upper
band �we note that ��k� will have opposite value in the
upper and lower bands as evident from Eq. �5��. Hence, val-
ley contrasted optical circular dichroism is also generally ac-
companied by a valley contrasted contribution to the Hall
conductivity. This makes possible optoelectronic schemes,
implementing this topological transport phenomena as will
be discussed in Sec. IV.

In ferromagnetic systems, the universal connection be-
tween ��k�, m�k�, and ��k� directly leads to the dichroic
sum rules for optical measurement of orbital magnetization
and intrinsic anomalous Hall conductivity, as given in the
Appendix.

III. VALLEY CONTRASTED OPTICAL SELECTION RULE
IN GRAPHENE

It has been shown by previous studies that a finite band
gap opens in graphene as a generic consequence of inversion
symmetry breaking.8–13 Optical interband transitions can
then be addressed in a similar way as that in conventional
direct band gap semiconductors. The band edges of both the
conduction and valance bands occur at the Dirac points
which have the threefold discrete rotational symmetry. We
first demonstrate the valley contrasting selection rules in
single layer graphene with staggered sublattice potential.
More complex optical activities in biased graphene bilayers
that enable additional optical control possibilities are pre-
sented next.

The active � bands in graphene originate from pz atomic
orbit with zero moment along the normal direction of the
plane. The extremely weak spin-orbit coupling can be
neglected.26,27 In the tight-binding approximation, graphene
single layer with staggered sublattice potential can be mod-
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eled with nearest-neighbor hopping energy t and a site en-
ergy difference between sublattices �,8,9

Ĥ�k� = 
 �/2 V�k�
V��k� − �/2 � . �7�

V�k�=−t�eik·d1 +eik·d2 +eik·d3�, where d1,2= a
2�3

x̂	
a
2 ŷ ,d3

=− a
�3

x̂ with a being the lattice constant. The two component
wave function represents the amplitude on sublattice A and
B, respectively. Without losing generality, we assume ��0,
i.e., sublattice A has a larger on-site energy. Equation �7� has
the solutions of a positive energy band �conduction� with
dispersion �c�k� and a negative energy band �valance� with
dispersion �v�k�=−�c�k�, separated by an energy gap of �.
�c�k� has two valleys centered at the Dirac points K1,2

= �
4�
3a x̂ for which we introduce the valley index �z=	. Near

the Dirac points,

�P	�k��2 = me
2v0

2�1 � �z cos ��2, �8�

where v0=
�3at
2� is the Fermi–Dirac velocity in graphene and

cos �=� / ��c�k�−�v�k��. At the bottom of valleys where
�c�k�−�v�k��, optical transition is strongest: �P�2 /me
�20 eV, comparable to that for the transition between �6
conduction and �8 valance bands in GaAs. Most signifi-
cantly, there is nearly perfect optical selection rule: �+
��−� circularly polarized light couples only to band-edge
transitions in valley K2 �K1� �Fig. 1�. The rule is exact at the
Dirac points where the conduction �valance� band state is
constructed entirely from the orbits on sublattice A �B� and
we have lc=�z �lv=−�z� under the threefold discrete rotation
�see Fig. 1�.28 Far away from the Dirac points �c�k�−�v�k�
��, circular dichroism disappears as in the isolated
graphene sheet and we reproduce the constant high fre-
quency optical conductivity found in Refs. 29 and 30.

In graphene bilayer with Bernal stacking, the A sublattice
of the upper layer sits on top of the B sublattice of the lower
layer. The band properties are well described by the tight-

binding approximation with an intralayer nearest-neighbor
hopping t, an interlayer nearest-neighbor hopping t�, and an
interlayer bias �,11–13

H�k� = �
�

2
V�k� 0 0

V��k�
�

2
t� 0

0 t� −
�

2
V�k�

0 0 V��k� −
�

2

� . �9�

The obtained band structures �see Fig. 2�a�� agree well with
the measurement using angular resolved photoemission
spectroscopy.10 The bilayer graphene has two positive energy
bands �conduction� and two negative energy bands �valance�.
k-resolved oscillator strength and the degree of circular po-
larization are shown for interband transitions between the
two conduction and the two valance bands. For the transi-
tions between the lower conduction band and the higher val-
ance band, a nearly perfect selection rule is obtained near the
Dirac points where valley K1 �K2� favors �− ��+� polarized
light, similar to that in the graphene single layer with
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FIG. 1. �Color online� �a� Left �right�: phase winding of the
conduction �valance� band Bloch function at K1=− 4�

3a x̂, showing
the intercellular current circulations. �b� Valley optical selection
rules: �+ ��−� circularly polarized light couples only to bandedge
transitions in valley K2 �K1�.
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FIG. 2. �Color online� Optical properties of interband transitions
in biased graphene bilayer. Energy dispersions are given in �a�.
k-resolved interband oscillator strength averaged over polarization
is shown in �b�. The degrees of circular polarization for the inter-
band transitions are shown in �c�. Note the range of horizontal axis
corresponds to valley K2. The values in valley K1 can be obtained
by noting that the oscillator strength is even function while the
degrees of circular polarization is odd function of k. Different line
style and color are used for transitions between different pairs of
bands as indicated by arrowed lines in �a�. The parameters used are
t=2.82 eV, �=0.3 eV, and t�=0.4 eV.
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staggered sublattice potential. A distinct feature for this in-
terband transition is the distribution of oscillator strength
sharply concentrated at the band edge of the Mexican hatlike
energy dispersion, in concert with the distribution of orbital
magnetic moment and Berry curvatures found in Ref. 31.
Interestingly, the transition between the two conduction
bands also has a perfect selection rule but with opposite
chirality in the vicinity of the Dirac points. The richer band
structures and optical activities allow more optical control
possibilities in bilayer graphene as discussed in Sec. IV.

In the above, we have assumed the value of ��0. In the
opposite case where ��0, the results remain the same ex-
cept that the degree of the circular polarization for optical
transition at each k-space point acquires a global minus sign,
so that we expect the opposite transition selection rule in the
two k-space valleys. Nevertheless, note that both the orbital
magnetic moment and the Berry curvature acquires a global
minus sign as well when � change sign. Thus, the optical
selection rule always has the same correlation with the valley
contrasted magnetic moment and the topological transport,
as evident from Eq. �6�. These physical properties in fact
provide a better index for the two inequivalent valleys than
the k-space positions.

IV. VALLEY OPTOELECTRONICS IN GRAPHENE

Valley optical selection rule makes possible distinct elec-
tronic response to light of different polarization, which may
be used as potential principle of light polarimetry. We give
an exemplary case below exploiting the topological transport
properties in graphene. Inversion symmetry breaking in
graphene leads to opposite Berry curvatures distribution in
the two valleys while the electrons and holes at the same k
point have the identical Berry curvatures.31,32 In absence of
magnetic field, the net charge Hall current at equilibrium is
zero as the Hall flows at the two valleys exactly cancel.31,33

Under the excitation by an optical field with �− ��+� polar-
izations, additional electrons and holes are generated in val-

ley K1 �K2�, and they move to opposite transverse edges of
the sample if the in-plane electric field is strong enough to
dissociate the electron–hole pairing �see Fig. 3�a� for an il-
lustration�. The sign of the developed transverse voltage thus
reflects the light polarization. For band-edge excitation, the
photoinduced Hall conductivity in the clean limit is �H
= 	4�n�0e2 /� for �	 polarized light, where �0
=2�2v0

2 /�2 is the Berry curvature at the bottom of valley K1
and �n is the density of the photoinduced valley polarized
electrons or holes. In the presence of disorder, carriers may
acquire an anomalous coordinate shift proportional to the
Berry curvature when they scatter off an impurity potential.34

This leads to a side-jump contribution to the Hall conductiv-
ity, which is also independent of the scattering rate. The total
Hall conductivity may have a sign change as a function of
the carrier density.31,35 Nevertheless, even in the presence of
disorders, the photoinduced Hall conductivity shall only de-
pend on the photoinduced carrier density and the magnitude
of the on-site energy difference ���. The sign and size of the
Hall voltage induced by light of certain polarization are in-
dependent of the density and details of the disorders34 and
are also independent of the sign of �. The latter is because
the relative sign between the Berry curvature and the degree
of circular polarization is universal �see Eq. �6� and also the
discussion in Sec. III�.

Complementarily, control of luminescence polarization by
electrical means becomes possible in graphene. Mid-infrared
light emitting diode �LED� with electrically controlled emis-
sion polarization can be realized in a similar fashion to the
spin LED for spintronics.3 One possible configuration is
shown in Fig. 3�b�. The n-type and p-type regions are con-
nected to the central intrinsic region through nanoribbons
with zigzag edges carved on the graphene sheet. These nan-
oribbons act as valley filters which preferentially allow right
�left� moving electrons and left �right� moving holes in val-
ley K2 �K1�.16 For example, under the applied gate bias
shown in Fig. 3�b�, electrons tunneling leftward from the
n-type region and holes tunneling rightward from the p-type
region both have their majority population in the K2 valley.
In the central region, electrons and holes bound to form ex-
citons and radiative recombinations of these valley polarized
excitons emit �+ polarized mid-infrared photons. For SiC
substrate with a dielectric constant of 10 and the resultant
graphene energy gap �=0.28 eV,9 the radiative recombina-
tion time for free excitons in graphene is estimated to be
TR�10 ps,36,37 much shorter than the observed intervalley
scattering time Tv�100 ps.38 Reversing the gate bias leads
to tunneling and recombination of electrons and holes domi-
nantly from valley K1 and the photon emitted from the cen-
tral region will have �− polarization. For small carrier den-
sity, both the valley filtering effects and optical selection
rules are nearly perfect. Since two intervalley scatterings are
needed to bring a bright exciton from one valley to the other,
we expect a polarization loss of �TR /Tv�2 by intervalley scat-
tering.

The electrically tunable energy gap in biased graphene
bilayer is a highly desirable property for optoelectronics as it
enables the interplay with light in a range of frequency. At
zero doping, the interband transition between the lower con-
duction band and upper valance band may be implemented

σ +

σ +(a)

(b)

FIG. 3. �Color online� Schematic device geometry of optoelec-
tronics based on valley contrasting optical properties of graphene.
The electrons �holes� in valley K2 are denoted by white ‘−’ �‘+’�
symbol in dark circles and their counterparts in valley K1 are de-
noted by inverse color. �a� Photoinduced anomalous Hall effect. �b�
Valley light emitting diode. See text for the explanation of operation
mechanisms.
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for a valley LED with an electrically tunable emitting fre-
quency. In metallic samples, the transition between the two
conduction bands is of interest, with a peaked oscillator
strength and perfect selection rules in the vicinity of the
Dirac points �Figs. 2�b� and 2�c��. The Mexican hatlike dis-
persion in the lower conduction band further enables the fre-
quency selectivity. Thus, photoinduced anomalous Hall ef-
fect and valley LED may also be realized in biased graphene
bilayer with a large sheet density by implementing this tran-
sition between the two conduction bands.

V. CONCLUSIONS

A valley contrasting optical transition selection rule by
inversion symmetry breaking is demonstrated in the exem-
plary system of graphene. In analogy to the spin degrees of
freedom in semiconductors, the valley index in graphene dis-
tinguishes the two groups of electrons in their response to
light with different circular polarizations. Hence, besides the
magneto-optical activities being found,39–41 graphene is of
rich natural optical activities for technological interests.42 We
show the possibility of the valley analog of spin optoelec-
tronics in graphene. Photoinduced anomalous Hall effect35,43

is discussed as an example of converting light polarization
information into electronic signal. Complementarily, polar-
ization of light emission may be controlled electronically. We
propose a graphene based valley LED in the mid-infrared
regime, with tunability in emission frequency if realized in
biased graphene bilayer. With the usage of valley index as
information carrier promised by the inefficient intervalley
scattering,16,44–46 the valley selection rule can be exploited
for a general class of optically controlled graphene based
logic with schemes borrowed from optical control of spin
information processing.3,47 In epitaxially grown graphene,
the as-prepared samples typically have a large sheet density
n�1012–1013 cm−2.9,10 Adsorption of atom or molecular
acceptors10,48 can be used in combination with gate voltage
control4–6 for applications desired in the semiconducting re-
gime.
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APPENDIX: DICHROIC SUM RULES

Overall circular dichroism has been suggested as a probe
for the orbital part of the magnetization in the literature.49–52

When the orbital magnetism in solids is atomic-like in na-
ture, a sum rule relates the integral of the circular dichroism
to the value of the orbital magnetization in ferromagnetic
systems.49,50 In insulators, in the presence of intercellular

current circulations, it is noticed that the circular dichroism
is only related to a portion of the total orbital
magnetization.52 The universal connection between the
k-resolved optical oscillator strength and the orbital magnetic
moment shown in Sec. II indicates that, in both insulators
and metals, the overall interband circular dichroism shall re-
flect the magnetization contributed from the band orbital
magnetic moment. When the contribution comes from a
single band, we clearly see from Eqs. �1� and �2� that

�B

2
��f−	 − �f+	� = ẑ · �

BZ

dk

�2��dg�k�m�k� , �A1�

where g�k� is the Fermi distribution function. The right hand
side is simply the sum of the orbital magnetic moment of the
filled states, which constitute a gauge invariant contribution
to the orbital magnetization.53,54 �f		 stands for the sum of
the interband oscillator strength with �	 polarized light,
respectively,24

�f		 � �
i
�

BZ

dk

�2��dg�k�
�Px

ci�k� 	 iPy
ci�k��2

me��c�k� − �i�k��
. �A2�

The total orbital magnetization also includes an additional
gauge invariant correction from the Berry phase effect,53

which is not directly related to the circular dichroism. The
sum rule revealed here clearly shows the physical signifi-
cance of dividing the orbital magnetization into these two
gauge invariant portions.

The sum of the Berry curvature of the filled states consti-
tutes the intrinsic �clean limit� contribution to the anomalous
Hall conductivity in ferromagnetic systems which, in two-
dimension, is given by55

�H =
2e2

�
�

BZ

dk

�2��2g�k���k� · ẑ . �A3�

The connection between the k-resolved optical oscillator
strength of interband transitions and the Berry curvature
makes possible optical measurement of this intrinsic contri-
bution to anomalous Hall conductivity. From Eq. �5�, we
find,

�H =
�0

�
� d���−

i ��� − �+
i ���� , �A4�

where �	
i ��� is the imaginary part of the dielectric function

due to interband absorptions,

�	
i ��� =

�e2

�0me
2�2�

i
�

BZ

dk

�2��2g�k��Px
ci�k� 	 iPy

ci�k��2���c�k�

− �i�k� − ��� . �A5�

Equation �A4� can be viewed as a manifestation of the
Kramers–Kronig relation on the interband part of the Hall
conductivity.55
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