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We construct a tight-binding model realizing one pair of Weyl nodes and three distinct Weyl semimetals. In
the type-I (type-II) Weyl semimetal, both nodes belong to type-I (type-II) Weyl nodes. In addition, there exists a
third type, previously undiscovered and dubbed “hybrid Weyl semimetal”, in which one Weyl node is of type I
while the other is of type II. For the hybrid Weyl semimetal, we further demonstrate the bulk Fermi surfaces and
the topologically protected surface states, analyze the unique Landau-level structure and quantum oscillation,
and discuss the conditions for possible material realization.
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Introduction. Since the theoretical and experimental discov-
ery of topological insulator [1,2], the study of topological states
of matter has become one of the major topics in condensed-
matter physics. Apart from the triumphs of systems with full
energy gaps, the concept and discovery of Weyl semimetals
(WSMs) have stimulated intensive activities in understanding
the band topology for gapless systems [3–18]. A WSM, in
the original setting, has linear conic band crossings at the
Fermi energy [5]. These band crossing points, i.e., the “Weyl
nodes”, behave like sources and sinks of the Berry curvature in
the momentum space and are topologically protected. Based
on the bulk-boundary correspondence, the surface state of a
WSM takes the form of Fermi arc that connects a pair of Weyl
points with opposite chiralities [5].

A type of structured Weyl node, dubbed type II, was recently
discovered in WTe2 [14] and a spin-orbit-coupled superfluid
[15]. In the original WSM, referred as type I, the Fermi surface
is composed of discrete Weyl points with emergent Lorentz
invariance. In type-II WSMs, the conic spectrum is tilted near
the nodes, and the emergent Lorentz invariance is broken.
These Lorentz-invariance-violating type-II Weyl nodes appear
at the contact points of the electron and hole pockets in type-II
WSMs. In all the previous works on type-I or type-II WSMs,
the two Weyl nodes in a pair with opposite chiralities are
of the same type [14,19]. One may wonder whether it is
possible to have a WSM such that one Weyl node belongs
to type I whereas its chiral partner belongs to type II (see
Fig. 1). In this Rapid Communication, we analyze the band
topology of a concrete lattice model and demonstrate that the
proposed WSM phase with mixed types of Weyl nodes can
be realized in the concrete model. We dub this special type
of WSM “hybrid WSM”. Remarkably, it is possible to have a
single isolated Weyl fermion in the excitation spectrum of this
hybrid WSM rather than several pairs of Weyl fermions in the
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conventional case. We explicitly show that the band structure
contains two Weyl nodes, whose types can be tuned separately
and independently. Therefore, our model provides a simple
platform to manipulate the energy-momentum positions, the
types of Weyl nodes, and the transitions among different
types of WSMs. We further explore the unique Landau-level
structure and quantum oscillation of the hybrid WSM. Based
on our results, we propose that the hybrid WSM may be found
in magnetically ordered noncentrosymmetric materials.

We start from the classification of the type-I and type-II
Weyl nodes following Refs. [14] and [15]. Due to the linear
band touching, the original pair of Weyl nodes with opposite
chiralities has an emergent Lorentz invariance at low energies,
and the gapless elementary excitation near the nodes are often
called “Weyl fermions”. The Lorentz invariance, however, is
broken by the lattice regularization that necessarily connects
the two Weyl nodes at high energy [20]. Significantly, this leads
to the intactness of anomalous Hall effect but the breakdown
of chiral magnetic effect. More seriously, the violation of
Lorentz invariance in condensed-matter systems allows the
tilting of Weyl nodes, as described in the following general

type-II
node type-I

node

E

k

FIG. 1. A schematic band structure of a hybrid WSM with a pair
of Weyl nodes. The left (right) node is a type-II (type-I) Weyl node.
Generically, the energies of these two Weyl nodes cannot be identical
when both time-reversal and inversion symmetries are absent.
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k · p Hamiltonian near a Weyl node:

hWeyl(k) =
∑

ij

kivijσj +
∑

i

kiui, (1)

where i,j = x,y,z. Interestingly, the sign of v̄ − 1, with v̄i =∑
j v−1

ij uj , defines the type of Weyl node:

v̄ < 1 ⇒ type I, (2)

v̄ > 1 ⇒ type II. (3)

For type-I nodes, the tilting is not too strong, and only energy
anisotropy in momentum develops near the node. For type-II
nodes, the tilting is sufficiently strong such that the Weyl node
develops a structure [15], i.e., a “bouquet” of two spheres in
mathematics, as depicted in Fig. 1. Physically, this implies
that electron and hole Fermi pockets touch at the Weyl node.
As shown in Ref. [15], an isolated “bouquet” enjoys the
same first Chern number of the original Weyl node, while
the electron or hole pocket is characterized by a zeroth Chern
number, i.e., the difference in hole-band number across the
Fermi sphere. In general, a Weyl node is characterized by
its chirality and its type. The chirality cannot be changed by
any local perturbation due to its topological protection by the
unaltered Chern number. The type, however, can be modified
by local disturbance through a topological transition in the
zeroth Chern numbers, which twists the electron (hole) band
down (up) near the Weyl node, as depicted in Fig. 1. In order
to separately manipulate the types of the two Weyl nodes
with opposite chiralities, any symmetry, e.g., inversion or
antiunitary particle-hole symmetry, that relates the two nodes
must then be broken. This is suggestive of the fundamental
existence of a pair of hybrid Weyl nodes with opposite
chiralities: one in type I and the other in type II.

We here propose a two-band tight-binding model of fermion
hopping on a simple cubic lattice. At low energy this minimal
model captures the essential physics of one pair of Weyl
nodes with opposite chiralities. In real crystalline solids, it
may represent a lattice regularization for a WSM or a Weyl
superconductor; in cold atom systems, it may directly describe
a Weyl superfluid or an artificial optical lattice with Weyl
nodes. Nevertheless, such a Hamiltonian may be written as

H =
∑

j

[−tx c†jσx cj+x̂ − ty c†jσx cj+ŷ − tzc†jσx cj+ẑ

− it ′y c†jσy cj+ŷ − it ′zc†jσzcj+ẑ + H.c.] + mc†jσx cj . (4)

Here c† = (c†↑,c
†
↓) are the creation operators of fermions with

spin ↑ and ↓, in which the Pauli matrices σ act on; t and t ′ are
the hopping energies and m is the on-site energy, which are all
spin dependent; x̂,ŷ,ẑ are the three first neighbor vectors on
the cubic lattice. In momentum space, the Hamiltonian Eq. (4)
reads

h(k) = (m − 2tx cos kx − 2ty cos ky − 2tz cos kz)σx

+ 2t ′y sin kyσy + 2t ′z sin kzσz. (5)

One can easily demonstrate that there exists one pair of
Weyl nodes at q± = (±k0,0,0) in the bulk Brillouin zone, and
that the Fermi velocities are v± = (±2tx sin k0,2t ′y,2t ′z) at the

FIG. 2. The WSM diagram in t1-t2 plane with φ1 = π,φ2 = π/2.
In the light (dark) blue region, type-I (type-II) WSM is realized. In
the remaining part of the diagram, hybrid WSM is obtained. See the
main text for the detailed discussion.

nodes, where cos k0 = (m/2 − ty − tz)/tx . One can also check
that in this model both time-reversal and inversion symmetries
are broken, as

T h(k)T −1 ̸= h(−k), (6)

Ph(k)P−1 ̸= h(−k), (7)

where T = σyK , P = I2×2, K is the complex conjugation,
and I2×2 is an identity matrix. Such broken symmetries
allow the presence of Weyl nodes, but their energies are not
necessarily the same. However, there are emergent inversion-
like and antiunitary particle-hole symmetries in the model,
i.e., σxh(k)σx = h(−k) and σzh(k)σz = −h∗(−k). The former
dictates the two nodes to appear at the same energy.

FIG. 3. The band structure along kx direction and the surface
states of different WSMs with representative parameters: (a) t1 =
0.5,t2 = 0, type-I WSM. (b) t1 = 0.5,t2 = 0.5, hybrid WSM. (c) t1 =
0.5,t2 = 1, type-II WSM. The hole pocket (in orange) and the electron
pocket (in light blue) near the type-II node are indicated. (d) Surface
Fermi arcs of a finite slab along the (001) direction for the hybrid
WSM in (b). Two Weyl nodes (at the blue dots) are projected to
(±π/2,0) in the surface Brillouin zone (kx-ky plane). The orange
(blue) area is the projected hole (electron) pocket. The orange (blue)
arc is localized on the top (bottom) surface and connects the hole
pocket with the type-I node. The lattice constant is set to unity.
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Here c† = (c†↑,c
†
↓) are the creation operators of fermions with

spin ↑ and ↓, in which the Pauli matrices σ act on; t and t ′ are
the hopping energies and m is the on-site energy, which are all
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nodes, where cos k0 = (m/2 − ty − tz)/tx . One can also check
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and I2×2 is an identity matrix. Such broken symmetries
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necessarily the same. However, there are emergent inversion-
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i.e., σxh(k)σx = h(−k) and σzh(k)σz = −h∗(−k). The former
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FIG. 3. The band structure along kx direction and the surface
states of different WSMs with representative parameters: (a) t1 =
0.5,t2 = 0, type-I WSM. (b) t1 = 0.5,t2 = 0.5, hybrid WSM. (c) t1 =
0.5,t2 = 1, type-II WSM. The hole pocket (in orange) and the electron
pocket (in light blue) near the type-II node are indicated. (d) Surface
Fermi arcs of a finite slab along the (001) direction for the hybrid
WSM in (b). Two Weyl nodes (at the blue dots) are projected to
(±π/2,0) in the surface Brillouin zone (kx-ky plane). The orange
(blue) area is the projected hole (electron) pocket. The orange (blue)
arc is localized on the top (bottom) surface and connects the hole
pocket with the type-I node. The lattice constant is set to unity.
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Extended Data Figure 5 | Calculation of the zero-flux Hamiltonian.  
a, Spinon dispersion ωk of the zero-flux Hamiltonian. The grey plane 
marks the Fermi level at ω =  0; its intersection with the band gives the 
Fermi surface. The light orange hexagon represents the projection of the 
first Brillouin zone. The maximum of ωk is 3t and the minimum is − 6t, 
providing a bandwidth of 9t. b, Calculated dynamic spin structure factor 
along high-symmetry directions. A reciprocal lattice unit (r.l.u.) is used 

here, which is obtained using π π= / − /H k k(4 ) 3 (4 )x y  and 
π π= / + /K k k(4 ) 3 (4 )x y . c, Measured spin excitation spectrum along 

high-symmetry directions at 70 mK. d, Calculated energy dispersion at the 
indicated momenta (marked by arrows in b). e, Measured constant-Q 
scans at the indicated momenta. The dashed line is the incoherent elastic 
line for Ef =  4 meV.
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To characterize the behaviour of the local moment of Yb, we first 
measured the magnetic susceptibility of single-crystalline YbMgGaO4 
(Fig. 1c). For magnetic fields H applied both parallel to and normal to 
the c axis of the lattice, we found predominantly antiferromagnetic 
spin interactions, as evidenced by negative Curie–Weiss temperatures  
(Fig. 1c, inset). Because of the anisotropic spin interaction, the Curie–
Weiss temperatures for H ⊥  c and H ‖  c were not identical (Fig. 1c, 
inset; Extended Data Fig. 1f), with ΘCW,⊥ =  − 4.78 K and ΘCW,‖ =   
− 3.2 K, consistent with previous measurements18,19. We examined 
the magnetic susceptibilities in field cooling (FC) and zero-field 
 cooling (ZFC)  measurements. No splitting was detected between the 
FC and ZFC results down to 2 K, indicating the absence of spin glassy 
 transitions (Fig. 1c).

The Curie–Weiss temperature and the spin excitation bandwidth 
(discussed below) set the energy scale for the spin interactions. Our 
elastic neutron scattering measurements revealed no magnetic Bragg 
peaks (Extended Data Fig. 2) at temperatures as low as 30 mK, con-
siderably lower than the Curie–Weiss temperature (about 4 K) and 
spin excitation bandwidth (about 17 K); this is consistent with pre-
vious  measurements of specific heat and susceptibility. To reveal the 
 intrinsic quantum dynamics of the local moments of Yb, we used 
inelastic  neutron scattering (INS) to study the spin excitations in sin-
gle  crystals of YbMgGaO4 at approximately 70 mK. Constant-energy 
images are presented in Fig. 2a–e, which indicate the presence of dif-
fusive  magnetic excitations for all measured energies. The scattering 
spectral weights are spread broadly in the Brillouin zone, whereas 
the spectral intensities near the zone centre (that is, the Γ  point) are  
suppressed. For a low-energy transfer of 0.3 meV, the spectral intensity 

is slightly more pronounced around the M points, while the broad con-
tinuum across the Brillouin zone still carries the vast majority of the 
spectral weight (Fig. 2a).

Figure 3a displays a contour plot of spectral intensity along the 
high-symmetry momentum directions (M–K–Γ –M–Γ ) in energy–
momentum (E–Q) space. Similarly to the constant-energy images 
shown in Fig. 2a–e, the spectral intensity is broadly distributed 
in momentum for all of the energies measured. Moreover, a clear 
V-shaped upper bound on the excitation energy is evident near the  
Γ  point (Fig. 3a, dotted line). The intensity of the spin excitation 
 gradually decreases with increasing energy, and vanishes above 
 approximately 1.5 meV. This feature is confirmed by the Q scans in 
Fig. 4a, b and the E scans at a few given momentum points (Γ , M and K)  
in Fig. 4c.

The broad continuum is an immediate consequence, and strong  
evidence, of spinon excitations in QSLs1,7,12. This differs from magnon- 
like excitations that would peak strongly at specific momenta in recip-
rocal space, with or without static magnetic order23,24. In general, the 
spinful excitations in QSLs are carried by deconfined spinons1,7. For 
most experimentally relevant QSLs, the spinons carry half-integer 
spins. One neutron-spin-flip event in an INS measurement creates an 
integer spin change that necessarily excites two (or more) spinons1. 
Therefore, the energy transfer E and momentum transfer p of the  
neutron are shared by two spinon excitations that are created by  
the neutron spin flip. According to energy–momentum conservation, 
we have E(p) =  ωs(k) +  ωs(p −  k), where ωs(k) is the spinon  dispersion 
and k is the momentum of one spinon. This relation implies the 
 presence of an excitation continuum in the INS spectrum. The broad 
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Particle-hole continuum of the spinon Fermi surface 

Y Shen, YD Li …GC*, J Zhao*   Nature 2016

YAO-DONG LI, YUAN-MING LU, AND GANG CHEN PHYSICAL REVIEW B 96, 054445 (2017)

Due to the Dirac band touchings at the Fermi level, the
low-energy dynamic spin structure factor, which measures the
spinon particle-hole continuum, is concentrated at a few dis-
crete momenta that correspond to the intra-Dirac-cone and the
inter-Dirac-cone scatterings [36]. Clearly, this is inconsistent
with the recent INS result that observes a broad continuum
covering a rather large portion of the Brillouin zone [36,37].

For the U1B states, the spinons experience a π background
flux in each unit cell. The direct consequence of the π
background flux is that the U1B states support an enhanced
periodicity of the dynamic spin structure in the Brillouin zone
[47,55,56]. Such an enhanced periodicity is absent in the INS
result [36,37]. In particular, unlike what one would expect for
an enhanced periodicity, the spectral intensity at the " point is
drastically different from the one at the M point in the existing
experiments [36,37].

The above analysis leads to the conclusion that the
U1A00 state is the most promising candidate U (1) QSL for
YbMgGaO4, and this conclusion is independent of any micro-
scopic model. The spinon mean-field Hamiltonian, allowed by
the U1A00 PSG, is remarkably simple and is given as1

H U1A00
MF = −t1

∑

⟨r r ′⟩,α
f †

rαfrα − t2
∑

⟨⟨r r ′⟩⟩,α
f †

rαfrα, (24)

where the spinon hopping is isotropic for the first and second
neighbors. This mean-field state only has a single band that
is half-filled, so it has a large spinon Fermi surface. From
H U1A00

MF , we construct the mean-field ground state by filling
the spinon Fermi sea,

∣∣$U1A00
MF

〉
=

∏

ϵk<ϵF

f
†
k↑f

†
k↓ |0⟩, (25)

where ϵk is the spinon dispersion and ϵF is the spinon Fermi
energy. The mean-field variational energy is

Evar =
〈
$U1A00

MF

∣∣Hspin
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MF

〉
, (26)

where

Hspin =
∑

⟨r r ′⟩
JzzS

z
rS

z
r ′ + J±(S+

r S−
r ′ + S−

r S+
r ′ )

+ J±±(γr r ′S
+
r S+

r ′ + γ ∗
r r ′S

−
r S−

r ′ )

− i

2
Jz±

[
(γ ∗

r r ′S
+
r − γr r ′S

−
r )Sz

r ′

+ Sz
r (γ ∗

r r ′S
+
r ′ − γr r ′S

−
r ′ )

]
(27)

is the microscopic spin model that was introduced in
Refs. [34,35], and γr r ′ is a bond-dependent phase factor
due to the spin-orbit-entangled nature of the Yb moments
[35] (see Appendix B). The anisotropic nature of the spin
interaction has been clearly supported by the recent polarized
neutron scattering measurement [57]. For the specific choice
with J± = 0.915Jzz, we find the minimum variational energy
Evar = −0.39Jzz and it occurs at t2 = 0.2t1 (see Appendix D).
Here, the expectation values of the J±± and Jz± interactions
simply vanish, and this is an artifact of the free spinon
mean-field theory with the isotropic hoppings in Eq. (24). We

1In Ref. [36], only the nearest-neighbor spinon hopping is included.

FIG. 3. (a) S(q,ω) along the high-symmetry momentum lines
from H U1A00

MF with t2 = 0.2t1. The spinon bandwidth B = 9.6t1. (b)
The RPA corrected SRPA(q,ω) along the high-symmetry momen-
tum lines. We have set the parameters in the spin model to be
J±/Jzz = 0.915, J±±/Jzz = 0.35, and Jz±/Jzz = 0.2. The ratio Jzz/t1
is obtained from Refs. [34,36] and fixed to be 1.0 for concreteness.

establish here that the U1A00 state is a spinon Fermi surface
U (1) QSL.

VI. SPECTROSCOPIC PROPERTIES

For the U1A00 state, the dynamic spin structure essentially
detects the spinon particle-hole excitation across the Fermi
surface. The information about the Fermi surface is encoded
in the profile of the dynamic spin structure factor. We evaluate
the dynamic spin structure factor within the free spinon mean-
field theory (see Appendix D) [see Fig. 3(a)]. Qualitatively
similar to the mean-field theory with only first-neighbor
spinon hoppings, the improved free-spinon mean-field theory
of H U1A00

MF captures the crucial features of the INS results
[36,37]. The spinon particle-hole continuum covers a large
portion of the Brillouin zone, and it vanishes beyond the spinon
bandwidth. More importantly, the “V-shape” upper excitation
edge near the " point in Fig. 3(a) was clearly observed in the
experiments [36,37], and the slope of the “V shape” is the
Fermi velocity.

Due to the isotropic spinon hoppings, H U1A00
MF does not

explicitly reflect the absence of spin-rotational symmetry that
is brought by the J±± and Jz± interactions. To incorporate the
J±± and Jz± interactions, we follow the phenomenological
RPA treatment for the “t-J ” model in the context of cuprate
superconductors [58], and we consider

H = H U1A00
MF + H ′

spin, (28)

where H ′
spin are the J±± and Jz± interactions (see Appendix D).

While the free spinon results from H U1A00
MF already capture

the main features of the neutron scattering data [36,37], the
anisotropic spin interaction H ′

spin, included by RPA, merely
redistributes the spectral weight in the momentum space. We
find in Fig. 3(b) that the low-energy spectral weight at M is
slightly enhanced, a feature observed in Refs. [36,37]. From
our choice of parameters, it is plausible that this peak results
from the proximity to a phase with a stripelike magnetic order
[35,36,39] (see Appendix D).

VII. DISCUSSION

We have demonstrated that the spinon Fermi surface
U (1) QSL gives a consistent explanation of the INS result
in YbMgGaO4. Moreover, the anisotropic spin interaction
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FIG. 1. (a) The intralayer symmetries of the R3̄m space group for
YbMgGaO4 [35]. (b) The same lattice symmetry group with a dif-
ferent complete set of elementary transformations. Here S6 ≡ C−1

3 I .
The bold arrow is the axis for the C2 rotation (see Appendix A).

coupling is present. In Sec. V, we explain the relationship
between the spinon band structure and the projective symmetry
group of the spinon mean-field states. In Sec. VI, we focus on
the U1A00 state and study the spectroscopic properties of
this state. Finally in Sec. VII, we discuss the experimental
relevance and remark on the thermal transport result and
the competing scenarios and proposals. The details of the
calculation are presented in the Appendixes.

II. SPACE-GROUP SYMMETRY

It was pointed out that intralayer symmetries involve two
translations, T1 and T2, one twofold rotation, C2, one threefold
rotation, C3, and one spatial inversion, I [see Fig. 1(a)]
[35,39]. Here we use a different complete set of elementary
transformations for the space-group symmetries that involve
two translations, T1 and T2, one twofold rotation, C2, and one
more operation, S6 [see the definition in Fig. 1(b)]. We can
now confirm I = S3

6 , C3 = S2
6 with the definition S6 ≡ C−1

3 I .
The multiplication rules of this symmetry group are given as

T −1
1 T2T1T

−1
2 = T −1

1 T −1
2 T1T2 = 1, (1)

C−1
2 T1C2T

−1
2 = C−1

2 T2C2T
−1

1 = 1, (2)

S−1
6 T1S6T2 = S−1

6 T2S6T
−1

2 T −1
1 = 1, (3)

(C2)2 = (S6)6 = (S6C2)2 = 1. (4)

Due to the presence of time reversal in YbMgGaO4 [34,36–38],
we further supplement the symmetry group with the time
reversal T such that O−1T OT = 1 and T 2 = 1, where O
is a lattice symmetry operation.

III. FERMIONIC PARTON CONSTRUCTION

To describe the U (1) QSL that we propose for YbMgGaO4,
we introduce the fermionic spinon operator frα(α = ↑, ↓) that
carries spin-1/2, and we express the Yb local moment as

Sr = 1
2

∑

α,β

f †
rασ αβfrβ , (5)

where σ = (σ x,σ y,σ z) is a vector of Pauli matrices. We further
impose a constraint

∑
α f

†
rαfrα = 1 on each site to project

back to the physical Hilbert space of the spins. The choice of
fermionic spinons allows a local SU (2) gauge freedom [47].

As a direct consequence of the spin-orbital entanglement,
the spinon mean-field Hamiltonian for the U (1) QSL should
generically involve both spin-preserving and spin-flipping
hoppings, and it has the following form:

HMF = −
∑

(r r ′)

∑

αβ

[ tr r ′,αβf †
rαfr ′β + H.c. ], (6)

where tr r ′,αβ is the spin-dependent hopping. The choice of
the mean-field ansatz in Eq. (6) breaks the local SU (2) gauge
freedom down to U (1). Here, to get a more compact form
for Eq. (6), we follow Ref. [48] and introduce the extended
Nambu spinor representation for the spinons such that $r =
(fr↑,f

†
r↓,fr↓, − f

†
r↑)T and

HMF = −1
2

∑

(r,r ′)

[$†
rur r ′$r ′ + H.c.], (7)

where ur r ′ is a hopping matrix that is related to tr r ′,αβ . With
the extended Nambu spinor, the spin operator Sr and the
generator Gr for the SU (2) gauge transformation are given
by [47,49–52]

Sr = 1
4$†

r (σ ⊗ I2×2)$r , (8)

Gr = 1
4$†

r (I2×2 ⊗ σ )$r , (9)

where I2×2 is a 2 × 2 identity matrix. Under the symmetry
operation O, $r transforms as

$r → UOGO
O(r)$O(r) = GO

O(r)UO$O(r), (10)

where GO
O(r) is the local gauge transformation that corresponds

to the symmetry operation O, and we add a spin rotation UO

because the spin components are transformed when O involves
a rotation. In Eq. (10), the gauge transformation and the spin
rotation are commutative [53] simply because [Sµ

r ,Gν
r ] = 0.

Moreover, from Eq. (9), the gauge transformation GO
r is block

diagonal with GO
r = I2×2 ⊗ WO

r , where WO
r is a 2 × 2 matrix

(see Appendix B).

IV. PROJECTIVE SYMMETRY GROUP CLASSIFICATION

For the spinon mean-field Hamiltonian in Eq. (6), the lattice
symmetries are realized projectively and form the projective
symmetry group (PSG). To respect the lattice symmetry
transformation O, the mean-field ansatz should satisfy

ur r ′ = GO†
O(r)U

†
OuO(r)O(r ′)UOGO

O(r ′). (11)

The ansatz itself is invariant under the so-called invariant gauge
group (IGG) with ur r ′ = G1†

r ur r ′G1
r ′ . The IGG can be regarded

as a set of gauge transformations that correspond to the identity
transformation. For an U (1) QSL, IGG = U (1).

A general group relation O1O2O3O4 = 1 for the lattice
symmetry turns into the following group relation for the PSG:

UO1
GO1

r UO2
GO2

O2O3O4(r)UO3
GO3

O3O4(r)UO4
GO4

O4(r)

= UO1
UO2

UO3
UO4

GO1
r GO2

O2O3O4(r)G
O3
O3O4(r)G

O4
O4(r) (12)

∈ IGG, (13)
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FIG. 1. (a) The intralayer symmetries of the R3̄m space group for
YbMgGaO4 [35]. (b) The same lattice symmetry group with a dif-
ferent complete set of elementary transformations. Here S6 ≡ C−1

3 I .
The bold arrow is the axis for the C2 rotation (see Appendix A).

coupling is present. In Sec. V, we explain the relationship
between the spinon band structure and the projective symmetry
group of the spinon mean-field states. In Sec. VI, we focus on
the U1A00 state and study the spectroscopic properties of
this state. Finally in Sec. VII, we discuss the experimental
relevance and remark on the thermal transport result and
the competing scenarios and proposals. The details of the
calculation are presented in the Appendixes.
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✤ Topological Weyl magnons 
   in ordered antiferromagnet

points in the local xy plane, and the angular variable y captures
the U(1) degeneracy. This is the same form of degeneracy found
for the S¼ 1/2 pyrochlore Er2Ti2O7 in ref. 19, where it was noted
that the degeneracy is accidental, that is, not protected by any
symmetry, and hence will be lifted by quantum fluctuations. The
same holds for the breathing pyrochlore, as we show now using
linear spin-wave theory. We introduce the Holstein–Primakoff
bosons to express the spin operators as Si " m̂i¼S# awi ai,
Si " ẑi¼ 2Sð Þ1=2ðaiþ awi Þ=2, and Si " m̂i'ẑið Þ¼ 2Sð Þ1=2ðai#awi Þ= 2ið Þ.
Keeping terms in the spin Hamiltonian H up to the quadratic
order in the Holstein–Primakoff bosons, one can readily write
down the spin-wave Hamiltonian as

Hsw ¼
P

k

P
m;n

Amn kð Þayk;mak;nþBmn kð Þa# k;mak;n

h

þ B(mn # kð Þayk;may# k;n

i
þEcl;

ð3Þ

where Ecl is the classical ground state energy, and Amn, Bmn satisfy
Amn kð Þ¼A(nm kð Þ, Bmn kð Þ¼Bnm # kð Þ and depend on the angular
variable y. Although the classical energy Ecl is independent of y
due to the U(1) degeneracy, the quantum zero point energy DE of
the spin-wave modes depends on y, and is given by
DE¼

P
k

P
m

1
2 om kð Þ#Amm kð Þ
! "

, where om(k) is the excitation
energy of the m-th spin-wave mode at momentum k and is
determined for every classical spin ground state. The minimum of
DE occurs at y¼p/6þ np/3 (np/3) with n 2 Z in regions I and II
(region III). The discrete minima and the corresponding
magnetic orders are equivalent under space group symmetry
operations. The U(1) degeneracy of the classical ground states is
thus broken by quantum fluctuations. This is the well-known
phenomenon known as quantum order by disorder19–22. The
resulting optimal state is a non-collinear one in which each spin
points along its local [112] ([1!10]) lattice direction in regions I
and II (region III), see Fig. 2.

To obtain the phase diagram in Fig. 1, we have implemented
the semiclassical approach and included the quantum fluctuation
within linear spin-wave theory. This treatment may under-
estimate the quantum fluctuation in the parameter regimes when
JcJ0, D or J0cJ, D. In the latter regimes, one may first consider
the tetrahedron with the strongest coupling and treat other
couplings as perturbations. The ground state in these regimes is
likely to be non-magnetic and will be addressed in the future
work. For the purpose of the current work, we will focus on the
ordered ground states in Figs 1 and 2.

Magnon Weyl nodes and surface states. Regions I and II have
the same magnetically ordered structure with the same order
parameter and belong to the same phase. Although the ground
states are characterized by the same order parameter, the
magnetic excitations of the two regions are topologically distinct.
The magnetic excitation in region I has Weyl band touchings,
while the region II does not. To further clarify this, we choose
y¼p/2 and thus fix the magnetic order to orient along the ŷ
directions of the local coordinate systems. Using linear spin-wave
theory, we obtain the magnetic excitation spectrum with respect
to this magnetic state for regions I and II. In Fig. 3a, we depict a
representative excitation spectrum along the high-symmetry lines
in the Brillouin zone for region I.

Two qualitative features are clear in the magnon spectrum of
Fig. 3a. First, we observe a gapless mode at the G point. This
pseudo-Goldstone mode is an artifact of the linear spin-wave
approximation, and a small gap is expected to be generated by
anharmonic effects19. Secondly, the spectrum in Fig. 3a has a
linear band touching at a point along the line between G and X. In
fact, as we show in Fig. 3b, there are in total four such linear band
touchings. The bands separate linearly in all directions away from
these touchings, which are thus Weyl nodes in the magnon
spectrum. Just like Weyl nodes of non-degenerate electron
bands8, the magnon Weyl points are sources and sinks of Berry
curvature and are characterized by a discrete chirality taking
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Figure 2 | Quantum zero point energy and the magnetic order. We have chosen the representative parameters in regions I and III with D¼0.2J,
J0¼0.6J in (a) and D¼0.05J, J0¼0.6J in (c), respectively. (b) The magnetic order in regions I and II with y¼ p/2 and the spins pointing along the local ŷ.
(d) The magnetic order in region III with y¼0 and the spins pointing along the local x̂.
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values ±1. Unlike in an electronic Weyl semimetal, where one
can tune the Fermi energy to the Weyl nodes by varying the
electron density, the magnon Weyl nodes must necessarily appear
at finite energies because of the bosonic nature of magnons.

Due to the bulk-edge correspondence, we expect magnon
arc states bound to any surface which possesses non-trivial
projections of the bulk Weyl points. This is indeed observed in
Fig. 4. The chiral magnon arcs appear at non-zero energy and
connect the bulk magnon Weyl nodes with opposite chiralities, as
expected.

Once the magnon Weyl nodes emerge in the magnon
spectrum, they are topologically robust and exist over a finite
regime in the parameter space. We find that the magnon Weyl
nodes exist in region I. As the couplings are varied so that the
boundary with region II is approached, the magnon Weyl nodes
move together and annihilate in pairs when the boundary is
reached. In region II, there is no such (Weyl) band crossing,
qualitatively distinguishing region II from region I.

Manipulating Weyl nodes by external magnetic fields. When
we apply an external magnetic field to the system, the spin only
couples to the field via a Zeeman coupling. This is quite different
from the case of electronic systems, in which a magnetic field also
has an orbital effect, which leads to cyclotron motion of electrons
and a transformation from ordinary bands into Landau ones.
In the latter case, the meaning of quasi-momentum is irrevocably
changed by an applied field, and one cannot follow the Weyl
point evolution with field. By contrast, since magnons are neutral,
there is no orbital effect, and quasi-momentum and the Weyl
points themselves remain well-defined even for strong fields.
Therefore, a magnetic field can be used to manipulate the Weyl
nodes. To demonstrate this explicitly, we focus on one specific
classical order in region I and apply a magnetic field along the
global z direction. The magnetic field perturbs the classical

ground state and indirectly changes the spin-wave Hamiltonian.
As we show in Fig. 5, the Weyl nodes are shifted gradually and
finally annihilated when the magnetic field is increased.

Discussion
We have explicitly shown the presence of Weyl nodes in a simple
and physically relevant model for the breathing pyrochlore lattice
antiferromagnet. Weyl points may also be present in other
pyrochlores for which the exchange is more complicated. The
spin-wave spectra of the highly anisotropic spin-1/2 pyrochlores
Yb2Ti2O7 and Er2Ti2O7 have been extensively studied19,23.
Re-examined here in the light of topology, we see that they are
present already in the spin-wave spectra of Yb2Ti2O7 and
Er2Ti2O7 in the external magnetic fields. Thus we think that
Weyl points can be present in many magnetic materials of current
interest.

Beyond these specific examples, we may ask what are the
conditions necessary to find Weyl points in the magnon
spectrum? In electronic systems, these points are symmetry
prevented, meaning that if both inversion P and time-reversal
symmetry T are present, Weyl points cannot occur. This is
because in that case, a two-fold Kramers’ degeneracy of bands
occurs, and any crossing must involve two and not four bands.
For magnons, there is never a Kramer’s degeneracy. This is
because magnons are integer spin excitations (even when the spin
is not a good quantum number they are superpositions of integer
spin excitations), which do not obey Kramer’s theorem because
T 2¼ þ 1 in this case. Moreover, in general the magnetic order
which underlies magnons already breaks time-reversal symmetry.
This suggests that Weyl points may be generically allowed.
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Figure 3 | The representative spin-wave spectrum and the Weyl nodes of
region I. (a) The spin-wave spectrum along high-symmetry momentum
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(b) Four Weyl nodes are located at (±k0, 0, 0), (0, ±k0, 0) with
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surface. (b) The (blue) bulk magnon excitations and the (red) chiral surface

states along G1G2
!!!

. The (green) dashed line indicates E¼ EWeyl.
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Weyl magnon

It is commonly thought that the spin ordering pattern of a
magnetic insulator uniquely specifies the state of the system1,
and indeed the ground state of such materials is usually

well-described by a simple product state of little fundamental
interest. However, in view of recent developments in the study of
topological properties of periodic media2,3, it is possible that
even such a product-like ground state can support topologically
non-trivial excited state band structure. Topological properties of
bands have been studied previously for electrons in solids
governed by Schrödinger’s equations2,3, for photons in dielectric
superlattices governed by Maxwell’s equations4,5, for phonons
governed by Newton’s equations4, and even for fractionalized
spinon excitation in spin liquids6,7. Here we apply these ideas to
magnons governed by the equations for spin waves in an ordered
antiferromagnet. We consider a concrete magnetic system,
namely, the Cr-based breathing pyrochlore, and explicitly
demonstrate that it supports Weyl magnon excitations with a
linear band touching in the spin-wave spectrum of the magnetic
ordered phase. The Weyl magnon is analogous to a Weyl
fermion8–11 in electronic systems, but has bosonic rather than
fermionic statistics, similar to Weyl points in photonic systems5.
In contrast to the other three categories of systems, the band
structure of magnons in antiferromagnets is highly tunable in situ
by application of readily available magnetic fields, which is a
consequence of the spontaneous symmetry breaking of the
antiferromagnet ground state and the relatively low-energy scale
for magnetic interactions in most solids. Thus one can envision
moving, creating and annihilating Weyl points in the laboratory
in a single experiment.

To explore Weyl magnons, we focus on a concrete and physical
model system, the breathing pyrochlore antiferromagnet. This is a
generalization of the common pyrochlore structure, which
consists of a network of corner sharing tetrahedra, with magnetic
ions at the corners. In the breathing pyrochlore, alternate
tetrahedra are uniformly expanded and contracted in size12–16.
As a result, the structure lacks an inversion center, and in
general up-pointing and down-pointing tetrahedral units are
inequivalent. We consider below a spin model for the breathing
pyrochlore, which generalizes and includes the uniform limit, and
displays Weyl points even in the uniform case. We obtain the full
phase diagram of this spin model and the magnetic excitations
in different phases. The experimental consequences of Weyl
magnons and the general conditions for their occurrence in spin
systems are predicted and discussed.

Results
Spin model. We consider Cr3þ ions in the breathing pyrochlore
lattice. There are several compounds with this structure,
including LiGaCr4O8 and LiInCr4O8, which have been recently
studied13,14. In this 3d3 electron configuration the orbital angular
momentum is fully quenched and the local moment is
well-described by the isotropic Heisenberg exchange and a total
spin S¼ 3/2 according to Hund’s rules. The minimal spin model
is given as

H ¼ J
X

ijh i2u

Si # Sjþ J 0
X

ijh i2d

Si # SjþD
X

i

Si # ẑið Þ2; ð1Þ

Since spin-orbit coupling is weak, the interaction between the
local moments is primarily where we have supplemented the
Heisenberg model with a local spin anisotropy17, which is
generically allowed by the D3d point group symmetry at the Cr
site. The anisotropic direction ẑi is the local [111] direction that
points into the center of each tetrahedron and is specified for each
sublattice (Methods). Here J and J0 are the exchange couplings
between the nearest-neighbour spins on the up-pointing and

down-pointing tetrahedra (Fig. 1), respectively. The large and
negative Curie–Weiss temperatures of the Cr-based breathing
pyrochlores indicate the strong atomic force microscopy
interactions, hence we take J40, J040. Because the up-pointing
and down-pointing tetrahedra have different sizes, one thus
expects JaJ0. In this work, however, we will study this model in a
general parameter setting. The atomic force microscopy exchange
interactions favour zero total spin on each up-pointing
(down-pointing) tetrahedron, that is,

P
i2u Si¼0 ð

P
i2d Si¼0Þ.

As for the regular pyrochlore lattice18, the classical ground state
of the exchange part of the Hamiltonian is extensively degenerate.

Ground states and quantum order by disorder. We first
consider easy-axis spin anisotropy with Do0. This favours the
spin to be aligned with its local [111] axis. It turns out that this
condition can be satisfied while simultaneously optimizing the
exchange interaction. This gives a unique classical ground state
(up to a 2-fold degeneracy from the time-reversal operation) that
has an all-in all-out magnetic order. The magnetic excitation of
this ordered state is fully gapped and the energy gap (D) is simply
set by the easy-axis spin anisotropy with D¼ 3|D| (Methods).

With the easy-plane anisotropy, D40, the spin prefers to
orient in the xy plane of the local coordinate system at each
sublattice. This requirement can also be satisfied while simulta-
neously optimizing the exchange. Moreover, there exists an
accidental U(1) degeneracy of the classical ground state that we
parametrize as

Scl
i & Sm̂i ¼ S cos y x̂iþ sin y ŷi

! "
; ð2Þ

where x̂i (ŷi) is the unit vector along the local x (y) axis in the
local coordinate system at site i (Methods), the unit vector m̂i
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Figure 1 | The breathing pyrochlore and the phase diagram.
(a) The breathing pyrochlore. The letter u(d) refers to the up-pointing
(down-pointing) tetrahedra and J(J0) indicates the nearest-neighbour
exchange couplings on the up-pointing (down-pointing) tetrahedra. (b) The
phase diagram. Regions I and II have the same magnetic order and belong
to the same phase, but the magnetic excitations of the two regions are
topologically distinct. Region III has a different magnetic order. The details
of the phase diagram are discussed in the main text.
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of this generic model, we find large parameter regions that
support ground states with continuous degeneracies. Due to
the spin-orbit entanglement, the generic model does not have
any continuous symmetry. The continuous degeneracy is thus
accidental and not related to any microscopic symmetry of
the model. We expect that the quantum fluctuations should
break the accidental degeneracy and favor magnetic ordered
states. This mechanism is known as order by quantum disorder
(ObQD) [36,46–48]. Because of the continuous degeneracy,
the fluctuations within the degenerate mean-field ground-
state manifold are very soft. Quantum fluctuations in a
systematic 1/S expansion would lead to a small gap and
a pseudo-Goldstone mode for large S, leading to a regime
of temperatures with an additional magnetic contribution to
the specific heat, Cmag ∼ T 3. The impact of large quantum
fluctuations for S = 1/2 may further enhance the ObQD gap;
there is no controlled theory in this regime. In addition to
the pseudo-Goldstone mode, the Weyl magnon mode [49] is
found in the magnetic excitation for certain magnetic order. In
contrast to the low-energy pseudo-Goldstone mode, the Weyl
magnon mode appears at finite energies due to the bosonic
nature of the spin-wave excitation.

This paper is organized as follows. In Sec. II, we derive
the generalized Kitaev-Heisenberg model. We present a
systematic analysis of the mean-field phase diagram of this
model in Sec. III. Competition between different interactions,
together with the geometrical frustration, leads to a very rich
phase diagram. Specifically, among different phases, we focus
on the regions with a continuous U (1) or O(3) degeneracy in
Sec. IV. The degeneracy at the mean-field level is lifted when
the quantum fluctuation is included, and various magnetic
orders are favored in these regions. We demonstrate the ObQD
explicitly. We further show the magnetic excitations of the
resultant ordered phases are characterized by the pseudo-
Goldstone mode with a nearly gapless dispersion. Finally, we
conclude with a discussion in Sec. V.

II. THE GENERALIZED KITAEV-HEISENBERG MODEL

We focus on a series of double perovskite-type oxides [40],
Ba2LnSbO6 (Ln = rare earth), where the Ba ions are located
at the A sites of the perovskite-type oxides ABO3, and the Ln
and Sb ions are regularly ordered at the B sites. Specifically,
the Ln and Sb ions are ordered in the rock-salt-type structure,
with space group Fm3̄m. Each of the two kinds of ions forms
a separate fcc lattice. The magnetic behavior depends on the
Ln3+ ions ([Xe]4f n, [Xe]: electronic xenon core), where the
SOCs are typically quite large. We study the Kramers’ doublet
that is formed by the 4f electrons of the Ln3+ ion with an odd
n when the crystal electric field enters.

Under the Fm3̄m space-group symmetry, the pseudospin,
S, that acts on the Kramers’ doublet of the rare-earth ion,
transforms as a pseudovector. Both the pseudospin position
and the pseudospin orientation are transformed. The most
general exchange interaction between the local moments on
the nearest-neighbor sites, allowed by the lattice symmetry, is
a generalized Kitaev-Heisenberg model with

H =
∑

⟨ij⟩γ±

[
J Si · Sj + KS

γ
i S

γ
j ± F

(
Sα

i S
β
j + S

β
i Sα

j

)]
, (1)
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z+z−
x+

x−

x

y

z

FIG. 1. The bond-dependent interactions in the fcc lattice. We
have marked the six distinct bond types γ± (γ = x,y,z), that have
the specific forms of bond-dependent interactions in Eq. (1). The
inset is the global coordinate system that defines the pseudospin
components.

where the bond index γ± refers to the specific interaction
that depends on the orientation of the bond in the plane
and the pseudospin components are defined in the global
coordinate system (see Fig. 1). We expect the nearest-neighbor
interaction is sufficient to describe the magnetic properties of
the rare-earth moments in this system as the 4f electrons
are very localized spatially. Besides the ordinary isotropic
Heisenberg exchange interaction, we have the well-known
Kitaev exchange interaction as well as the symmetric pseu-
dodipole interaction that depends on the bond orientation. In
Eq. (1), the antisymmetric Dzyaloshinskii-Moriya interaction
is prohibited by the inversion symmetry of the system [50].
The component γ (=x,y,z) specifies the three distinct types
of Ising coupling in the Kitaev exchange (K term), and
{α,β,γ } is a cyclic permutation of {x,y,z}, which contributes
to the symmetric pseudodipole interaction (F term). The bond-
dependent pseudospin interaction is a direct consequence of
the spin-orbit entanglement and widely occurs in many strong
spin-orbit-coupled materials [1,21,26,27,38].

This generalized Kitaev-Heisenberg model was obtained
previously by one of the authors and his collaborators in
the context of the iridium-based double perovskites La2BIrO6
(B = Mg,Zn) [51,52]. In the previous works, the mean-field
phase diagram in the antiferromagnetic Heisenberg regime was
obtained with classical mean-field theory and classical Monte
Carlo [51], and the spin-wave spectrum was compared to the
experiments in the regime with a dominant Kitaev interaction
and a sizable second-neighbor ferromagnetic interaction be-
tween the iridium local moments [52]. Here, our motivation
and purpose in this paper are different. We are inspired by
the magnetic properties of the rare-earth double perovskites
that host 4f electrons. As we have explained in Sec. I, the
exchange interaction of 4f local moments is short-ranged, and
we only keep the nearest-neighbor interactions. This clearly
differs from iridates. For iridates, there are five electrons (or
one hole) in the triply degenerate t2g orbitals for the magnetic
ion Ir4+ in the cubic crystal field environment. The atomic
spin-orbit coupling is active on the t2g orbitals and entangles
the atomic spin with the orbitals. The simplicity of the
spin-orbit-entangled wave function and the Ir-O-Ir exchange
path allows the determination of the exchange interaction from
a microscopic perspective [13,21]. The Heisenberg part of the
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of this generic model, we find large parameter regions that
support ground states with continuous degeneracies. Due to
the spin-orbit entanglement, the generic model does not have
any continuous symmetry. The continuous degeneracy is thus
accidental and not related to any microscopic symmetry of
the model. We expect that the quantum fluctuations should
break the accidental degeneracy and favor magnetic ordered
states. This mechanism is known as order by quantum disorder
(ObQD) [36,46–48]. Because of the continuous degeneracy,
the fluctuations within the degenerate mean-field ground-
state manifold are very soft. Quantum fluctuations in a
systematic 1/S expansion would lead to a small gap and
a pseudo-Goldstone mode for large S, leading to a regime
of temperatures with an additional magnetic contribution to
the specific heat, Cmag ∼ T 3. The impact of large quantum
fluctuations for S = 1/2 may further enhance the ObQD gap;
there is no controlled theory in this regime. In addition to
the pseudo-Goldstone mode, the Weyl magnon mode [49] is
found in the magnetic excitation for certain magnetic order. In
contrast to the low-energy pseudo-Goldstone mode, the Weyl
magnon mode appears at finite energies due to the bosonic
nature of the spin-wave excitation.

This paper is organized as follows. In Sec. II, we derive
the generalized Kitaev-Heisenberg model. We present a
systematic analysis of the mean-field phase diagram of this
model in Sec. III. Competition between different interactions,
together with the geometrical frustration, leads to a very rich
phase diagram. Specifically, among different phases, we focus
on the regions with a continuous U (1) or O(3) degeneracy in
Sec. IV. The degeneracy at the mean-field level is lifted when
the quantum fluctuation is included, and various magnetic
orders are favored in these regions. We demonstrate the ObQD
explicitly. We further show the magnetic excitations of the
resultant ordered phases are characterized by the pseudo-
Goldstone mode with a nearly gapless dispersion. Finally, we
conclude with a discussion in Sec. V.

II. THE GENERALIZED KITAEV-HEISENBERG MODEL

We focus on a series of double perovskite-type oxides [40],
Ba2LnSbO6 (Ln = rare earth), where the Ba ions are located
at the A sites of the perovskite-type oxides ABO3, and the Ln
and Sb ions are regularly ordered at the B sites. Specifically,
the Ln and Sb ions are ordered in the rock-salt-type structure,
with space group Fm3̄m. Each of the two kinds of ions forms
a separate fcc lattice. The magnetic behavior depends on the
Ln3+ ions ([Xe]4f n, [Xe]: electronic xenon core), where the
SOCs are typically quite large. We study the Kramers’ doublet
that is formed by the 4f electrons of the Ln3+ ion with an odd
n when the crystal electric field enters.

Under the Fm3̄m space-group symmetry, the pseudospin,
S, that acts on the Kramers’ doublet of the rare-earth ion,
transforms as a pseudovector. Both the pseudospin position
and the pseudospin orientation are transformed. The most
general exchange interaction between the local moments on
the nearest-neighbor sites, allowed by the lattice symmetry, is
a generalized Kitaev-Heisenberg model with

H =
∑

⟨ij⟩γ±

[
J Si · Sj + KS

γ
i S

γ
j ± F

(
Sα

i S
β
j + S

β
i Sα

j

)]
, (1)
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FIG. 1. The bond-dependent interactions in the fcc lattice. We
have marked the six distinct bond types γ± (γ = x,y,z), that have
the specific forms of bond-dependent interactions in Eq. (1). The
inset is the global coordinate system that defines the pseudospin
components.

where the bond index γ± refers to the specific interaction
that depends on the orientation of the bond in the plane
and the pseudospin components are defined in the global
coordinate system (see Fig. 1). We expect the nearest-neighbor
interaction is sufficient to describe the magnetic properties of
the rare-earth moments in this system as the 4f electrons
are very localized spatially. Besides the ordinary isotropic
Heisenberg exchange interaction, we have the well-known
Kitaev exchange interaction as well as the symmetric pseu-
dodipole interaction that depends on the bond orientation. In
Eq. (1), the antisymmetric Dzyaloshinskii-Moriya interaction
is prohibited by the inversion symmetry of the system [50].
The component γ (=x,y,z) specifies the three distinct types
of Ising coupling in the Kitaev exchange (K term), and
{α,β,γ } is a cyclic permutation of {x,y,z}, which contributes
to the symmetric pseudodipole interaction (F term). The bond-
dependent pseudospin interaction is a direct consequence of
the spin-orbit entanglement and widely occurs in many strong
spin-orbit-coupled materials [1,21,26,27,38].

This generalized Kitaev-Heisenberg model was obtained
previously by one of the authors and his collaborators in
the context of the iridium-based double perovskites La2BIrO6
(B = Mg,Zn) [51,52]. In the previous works, the mean-field
phase diagram in the antiferromagnetic Heisenberg regime was
obtained with classical mean-field theory and classical Monte
Carlo [51], and the spin-wave spectrum was compared to the
experiments in the regime with a dominant Kitaev interaction
and a sizable second-neighbor ferromagnetic interaction be-
tween the iridium local moments [52]. Here, our motivation
and purpose in this paper are different. We are inspired by
the magnetic properties of the rare-earth double perovskites
that host 4f electrons. As we have explained in Sec. I, the
exchange interaction of 4f local moments is short-ranged, and
we only keep the nearest-neighbor interactions. This clearly
differs from iridates. For iridates, there are five electrons (or
one hole) in the triply degenerate t2g orbitals for the magnetic
ion Ir4+ in the cubic crystal field environment. The atomic
spin-orbit coupling is active on the t2g orbitals and entangles
the atomic spin with the orbitals. The simplicity of the
spin-orbit-entangled wave function and the Ir-O-Ir exchange
path allows the determination of the exchange interaction from
a microscopic perspective [13,21]. The Heisenberg part of the
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FIG. 2. Phase diagrams for magnetic fields along (a) [111], (b) [001], and (c) [110] directions. Outside the QSL phases are the induced
magnetic ordered phase via the spinon condensation. For h = 0, the spinons are condensed at kc = (0,0,0), and we choose the local moments
to order in the local ẑ direction. In (a), a large magnetic field near the vertical axis drives the spinon condensation at kc = π (1,1,1), and the
resulting order is depicted in the figure. This order smoothly connects to the order on the horizontal axis. The cases in (b) and (c) are similar,
except that in (b) the field on the vertical axis drives the condensation at kc = 2π (0,0,1), while in (c) kc = π (1,1,0) near the vertical axis. We
set the diamond lattice constant to unity.

an Anderson-Higgs’ transition and inducing the long-range
magnetic orders.

Generic model for DO doublets on the pyrochlore
lattice. Because of the peculiar symmetry properties of the
DO doublets, the most generic model that describes the
nearest-neighbor interaction between them is given as HDO =∑

⟨ij⟩[Jxτ
x
i τ x

j + Jyτ
y
i τ

y
j + Jzτ

z
i τ z

j + Jxz(τ
x
i τ z

j + τ z
i τ x

j )] [10].
Here the interaction is uniform on every bond despite the fact
that the DO doublet involves a significant contribution from
the orbital part due to the strong SOC [15–20], and the DO
doublet is modeled by an effective pseudospin-1/2 moment
τ . Both τ x and τ z transform as the dipole moments under the
space group symmetry, while the τ y component behaves as
an octupole moment [10]. It is this important difference that
leads to some of the unique properties of its U(1) QSL ground
states.

Due to the spatial uniformity of the generic model, we can
transform the model HDO into the XYZ model with

HXYZ =
∑

⟨ij⟩
J̃x τ̃

x
i τ̃ x

j + J̃y τ̃
y
i τ̃

y
j + J̃zτ̃

z
i τ̃ z

j , (1)

where τ̃ x and τ̃ z (J̃x and J̃z) are related to τ x and τ z (Jx and
Jz) by a rotation around the y direction in the pseudospin
space, and τ̃ y ≡ τ y,J̃y ≡ Jy . When one of the couplings,
J̃µ, is dominant and antiferromagnetic, the corresponding
pseudospin component, τ̃µ, is regarded as the Ising component
of the model, and the ground state is a U(1) QSL in the
corresponding quantum spin ice regime. The dipolar U(1) QSL
is realized when the Ising component is the dipole moment τ̃ x

or τ̃ z, while the octupolar U(1) QSL is realized when the
Ising component is the octupole moment τ̃ y . In the compact
U(1) quantum electrodynamics description of the low energy
properties of the U(1) QSL [21,22], the Ising component is
identified as the emergent electric field [21]. Therefore, the
emergent electric field transforms very differently under the
lattice symmetry in dipolar and octupolar U(1) QSLs, making
these two U(1) QSLs symmetry enriched U(1) topological
order on the pyrochlore lattice [10].

Octupolar U(1) QSL and field-driven Anderson-Higgs’
transitions. Since the dipolar U(1) QSL has been discussed
many times in literature [10,23–31], we here focus on the
octupolar U(1) QSL of the octupolar quantum spin ice regime

where J̃y is dominant and antiferromagnetic. The octupolar
U(1) QSL is a new phase that is unique to the DO doublet
and cannot be found in any other doublets on the pyrochlore
lattice.

We consider the coupling of the DO doublet to the
external magnetic field. Remarkably, because τ̃ y is an octupole
moment, it does not couple to the magnetic field even though
it is time reversally odd. Only the dipolar component τ z

couples linearly to the external magnetic field. The resulting
model is

H =
∑

⟨ij⟩

∑

µ=x,y,z

J̃µτ̃
µ
i τ̃

µ
j −

∑

i

h (n̂ · ẑi) τ z
i , (2)

where n̂ is the direction of the magnetic field and ẑi is the z
direction of the local coordinate basis at the lattice site i [32].
This generic model describes all magnetic properties of the
DO doublets on the pyrochlore lattice.

As the generic model contains four parameters, it necessar-
ily brings some unnecessary complication into the problem.
To capture the essential physics, we here consider a simplified
version of the generic model in Eq. (2). The simplified model
is

Hsim =
∑

⟨ij⟩
Jyτ

y
i τ

y
j − J±(τ+

i τ−
j + H.c.) −

∑

i

h (n̂ · ẑi) τ z
i ,

(3)

where we define τ±
i = τ z

i ± iτ x
i and n̂ is the direction of the

external magnetic field. In the Ising limit with J± = 0 and
h = 0, the antiferromagnetic Jy favors the τ y components to
be in the ice manifold and requires a “two-plus two-minus”
ice constraint for the τ y configuration on each tetrahedron.
This octupolar ice manifold is extensively degenerate. With a
small and finite J± or h, the system can then tunnel quantum
mechanically within the octupolar ice manifold and form an
octupolar U(1) QSL. In this perturbative limit, the degenerate
perturbation theory yields an effective ring exchange model
with [32]

Hring = Jring

∑

!
[τ+

i τ−
j τ+

k τ−
l τ+

m τ−
n + H.c.], (4)

where “i,j,k,l,m,n” are six sites on the perimeter of the
elementary hexagon of the pyrochlore lattice, and the ring
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exchange Jring < 0 for J± > 0 and for either sign of h. Hring
does not involve defect tetrahedra that violate the ice constraint
and thus only describes the quantum fluctuation and dynamics
within the ice manifold. It is well known that the low energy
properties of Hring are described by the compact U(1) quantum
electrodynamics [21] of the U(1) QSL with gapless gauge
photon, and the spin-flip operator τ±

i is identified as the gauge
string within the ice manifold. We expect the simplified model
Hsim captures the generic properties of the octupolar U(1) QSL.

To obtain the phase diagram of Hsim, we start from the
octupolar U(1) QSL phase and study its instability. For this
purpose, we include the spinon excitations (that are out of the
ice manifold) into the formulation. The perturbative analysis
and Hring, that focus on the ice manifold, do not capture the
spinons. We here implement a parton-gauge construction for
the octupolar U(1) QSL and formulate Hsim into a lattice gauge
theory with the spinons. Like many other parton construction,
we replace the physical Hilbert space with a larger one and
supplement it with a constraint. We follow Refs. [23,24] and
express the pseudospin operators as

τ+
i = "†

r"r′s
+
rr′ , τ

y
i = s

y
rr′ , (5)

where rr′ is the link that connects two neighboring tetrahedral
centers at r and r′, and the pyrochlore site i is shared by the
two tetrahedra. The centers of the tetrahedra form a diamond
lattice, and r (r′) belongs to the I (II) diamond sublattice. Here
srr′ is a spin-1/2 variable that corresponds to the emergent
gauge field, and "

†
r ("r) creates (annihilates) one spinon at

the diamond site r. The spinons carry the emergent electric
charge, and "

†
r and "r are raising and lowering operators of

the emergent electric charge. Since we enlarged the physical
Hilbert space, the constraint Qr = ηr

∑
µ τ

y
r,r+ηreµ

is imposed,
where ηr = 1 (−1) for the I (II) sublattice and the eµ’s are the
first neighbor vectors of the diamond lattice. Here Qr measures
the electric charge at r and satisfies

["r,Qr] = "r, ["†
r,Qr] = −"†

r. (6)

The U(1) QSL of quantum spin ice is an example of
the string-net condensed phases [34]. In the U(1) QSL, τ±

i

creates the shortest open (gauge) string whose ends are spinon
particles. In the spin ice context, τ±

i creates two defect
tetrahedra that violate the “two-plus two-minus” ice constraint.
The parton-gauge construction captures this essential property,
and the model becomes

Hsim =
∑

r

JyQ
2
r

2
−

∑

r

∑

µ ̸=ν

J±"
†
r+ηreµ

"r+ηreν
s
−ηr
r,r+ηreµ

× s
+ηr
r,r+ηreν

−
∑

⟨rr′⟩

h

2
(n̂ · ẑi)("†

r"r′s
+
rr′ + H.c.). (7)

With the constraint, Eq. (7) is an exact reformulation of the
simplified model in Eq. (3). It describes the bosonic spinons
hopping on the diamond lattice. The spinons are minimally
coupled with the emergent U(1) gauge field. Remarkably, the
external magnetic field directly couples to the spinons and
does not couple to the emergent electric field. This is sharply
distinct from the dipolar U(1) QSL where the magnetic field
would also directly couple with the emergent electric field.

FIG. 3. Lower excitation edges of the spinon continuum in the
dynamic spin structure factor under (a) zero magnetic field, and field
along (b) [111], (c) [001], and (d) [110] directions. In the figure, we
set J± = 0.1 Jy . The inset of (a) is the Brillouin zone [33].

Inside the U(1) QSL, the spinons are fully gapped. The
external magnetic field allows the spinon to tunnel between the
neighbor tetrahedra that are located along the field direction.
As we increase the magnetic field h, the spinon gap gradually
decreases. It is expected that, at a critical field strength, the
spinon gap is closed and the spinons are condensed with
⟨"r⟩ ̸= 0. Via the Anderson-Higgs’ mechanism, the U(1)
gauge field becomes massive and gapped. Note that this differs
from the Coulomb ferromagnet where the gauge field remains
gapless and deconfined [23]. The resulting proximate state
develops a long-range magnetic order. Therefore, this is an
Anderson-Higgs’ transition driven by the external magnetic
fields. This is a generic property of the octupolar U(1) QSL
and is not a specific property of the simplified model. This is
an example that an external probe drives an Anderson-Higgs’
transition in a physical system.

To solve the reformulated model in Eq. (7), we adopt the
gauge mean-field approximation [10,23–25]. In this approxi-
mation, we decouple the model into the spinon sector and the
gauge sector. Since Hring favors a zero background gauge flux
on each elementary hexagon of the diamond lattice, we solve
for the mean-field ground state within this sector [32]. The
magnetic dipolar order is obtained by evaluating

〈
τ z
i

〉
= 1

2 [⟨τ+
i ⟩ + ⟨τ−

i ⟩] (8)

= 1
2 [⟨"†

r"r′ ⟩⟨s+
rr′ ⟩ + H.c.], (9)

where ⟨· · · ⟩ is taken with respect to the ground state. Because
of the Zeeman coupling, ⟨τ z

i ⟩ is nonzero even in the U(1)
QSL phase where the spinons are not condensed. In the
proximate ordered state, the spinon condensate gives an
additional contribution that is the induced magnetic order. For
all three directions of the external magnetic field, even though
the spinons are condensed at finite momenta, the proximate
magnetic order preserves the translation symmetry.

The full phase diagrams and the field-induced proximate
magnetic orders are depicted in Fig. 2. The magnetic field
is found to be least effective in destructing the U(1) QSL
for the field along the [110] direction. This is because the
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FIG. 2. Phase diagrams for magnetic fields along (a) [111], (b) [001], and (c) [110] directions. Outside the QSL phases are the induced
magnetic ordered phase via the spinon condensation. For h = 0, the spinons are condensed at kc = (0,0,0), and we choose the local moments
to order in the local ẑ direction. In (a), a large magnetic field near the vertical axis drives the spinon condensation at kc = π (1,1,1), and the
resulting order is depicted in the figure. This order smoothly connects to the order on the horizontal axis. The cases in (b) and (c) are similar,
except that in (b) the field on the vertical axis drives the condensation at kc = 2π (0,0,1), while in (c) kc = π (1,1,0) near the vertical axis. We
set the diamond lattice constant to unity.

an Anderson-Higgs’ transition and inducing the long-range
magnetic orders.

Generic model for DO doublets on the pyrochlore
lattice. Because of the peculiar symmetry properties of the
DO doublets, the most generic model that describes the
nearest-neighbor interaction between them is given as HDO =∑

⟨ij⟩[Jxτ
x
i τ x

j + Jyτ
y
i τ

y
j + Jzτ

z
i τ z

j + Jxz(τ
x
i τ z

j + τ z
i τ x

j )] [10].
Here the interaction is uniform on every bond despite the fact
that the DO doublet involves a significant contribution from
the orbital part due to the strong SOC [15–20], and the DO
doublet is modeled by an effective pseudospin-1/2 moment
τ . Both τ x and τ z transform as the dipole moments under the
space group symmetry, while the τ y component behaves as
an octupole moment [10]. It is this important difference that
leads to some of the unique properties of its U(1) QSL ground
states.

Due to the spatial uniformity of the generic model, we can
transform the model HDO into the XYZ model with

HXYZ =
∑

⟨ij⟩
J̃x τ̃

x
i τ̃ x

j + J̃y τ̃
y
i τ̃

y
j + J̃zτ̃

z
i τ̃ z

j , (1)

where τ̃ x and τ̃ z (J̃x and J̃z) are related to τ x and τ z (Jx and
Jz) by a rotation around the y direction in the pseudospin
space, and τ̃ y ≡ τ y,J̃y ≡ Jy . When one of the couplings,
J̃µ, is dominant and antiferromagnetic, the corresponding
pseudospin component, τ̃µ, is regarded as the Ising component
of the model, and the ground state is a U(1) QSL in the
corresponding quantum spin ice regime. The dipolar U(1) QSL
is realized when the Ising component is the dipole moment τ̃ x

or τ̃ z, while the octupolar U(1) QSL is realized when the
Ising component is the octupole moment τ̃ y . In the compact
U(1) quantum electrodynamics description of the low energy
properties of the U(1) QSL [21,22], the Ising component is
identified as the emergent electric field [21]. Therefore, the
emergent electric field transforms very differently under the
lattice symmetry in dipolar and octupolar U(1) QSLs, making
these two U(1) QSLs symmetry enriched U(1) topological
order on the pyrochlore lattice [10].

Octupolar U(1) QSL and field-driven Anderson-Higgs’
transitions. Since the dipolar U(1) QSL has been discussed
many times in literature [10,23–31], we here focus on the
octupolar U(1) QSL of the octupolar quantum spin ice regime

where J̃y is dominant and antiferromagnetic. The octupolar
U(1) QSL is a new phase that is unique to the DO doublet
and cannot be found in any other doublets on the pyrochlore
lattice.

We consider the coupling of the DO doublet to the
external magnetic field. Remarkably, because τ̃ y is an octupole
moment, it does not couple to the magnetic field even though
it is time reversally odd. Only the dipolar component τ z

couples linearly to the external magnetic field. The resulting
model is

H =
∑

⟨ij⟩

∑

µ=x,y,z

J̃µτ̃
µ
i τ̃

µ
j −

∑

i

h (n̂ · ẑi) τ z
i , (2)

where n̂ is the direction of the magnetic field and ẑi is the z
direction of the local coordinate basis at the lattice site i [32].
This generic model describes all magnetic properties of the
DO doublets on the pyrochlore lattice.

As the generic model contains four parameters, it necessar-
ily brings some unnecessary complication into the problem.
To capture the essential physics, we here consider a simplified
version of the generic model in Eq. (2). The simplified model
is

Hsim =
∑

⟨ij⟩
Jyτ

y
i τ

y
j − J±(τ+

i τ−
j + H.c.) −

∑

i

h (n̂ · ẑi) τ z
i ,

(3)

where we define τ±
i = τ z

i ± iτ x
i and n̂ is the direction of the

external magnetic field. In the Ising limit with J± = 0 and
h = 0, the antiferromagnetic Jy favors the τ y components to
be in the ice manifold and requires a “two-plus two-minus”
ice constraint for the τ y configuration on each tetrahedron.
This octupolar ice manifold is extensively degenerate. With a
small and finite J± or h, the system can then tunnel quantum
mechanically within the octupolar ice manifold and form an
octupolar U(1) QSL. In this perturbative limit, the degenerate
perturbation theory yields an effective ring exchange model
with [32]

Hring = Jring

∑

!
[τ+

i τ−
j τ+

k τ−
l τ+

m τ−
n + H.c.], (4)

where “i,j,k,l,m,n” are six sites on the perimeter of the
elementary hexagon of the pyrochlore lattice, and the ring
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FIG. 1. (a) Diamond lattice (in thin line) and its dual diamond lattice (in thick line). The physical spin is located in the middle of the
link on the diamond lattice. The spinons (“monopoles”) hop on the diamond (dual diamond) lattice. The colored dots correspond to the
tetrahedral centers of the pyrochlore lattice. (b) Every buckled hexagon on the dual diamond lattice traps a “π” background dual U (1) flux that
is experienced by the “monopole” hopping. I and II refer to the two sublattices of the dual diamond lattice. In (c) and (d), the background flux
trapped in the (dashed) parallelogram is identical to the flux in the (colored) buckled hexagon.

the dual diamond lattice with [13]

2π⟨curl α⟩ = πηr ≡ π (mod 2π ). (11)

To see the effect of the background dual gauge flux,
we introduce the translation operator for the “magnetic
monopole,” T m

µ , that translates the “monopole” by a ba-
sis lattice vector aµ of the dual diamond lattice, where
µ = 1,2,3, and a1 = 1

2 (011),a2 = 1
2 (101),a3 = 1

2 (110). We
use the cubic coordinate system and set the lattice constant
to unity throughout the paper. As the “magnetic monopole”
hops successively through the parallelogram defined by
T m

µ T m
ν (T m

µ )−1(T m
ν )−1 with µ ̸= ν, the “monopole” experi-

ences an identical Aharonov-Bohm flux as the background
flux trapped in the hexagon plaquette of the dual diamond
lattice (see Fig. 1). This is because of the lattice geometry of
the diamond lattice. Thus, we have the following algebraic
relation:

T m
µ T m

ν

(
T m

µ

)−1(
T m

ν

)−1 = eiπ = −1. (12)

This algebraic relation means the lattice translation symme-
try is realized projectively for the “magnetic monopoles.”
The translation symmetry fractionalization for the “magnetic
monopole” is intimately connected to the spectral periodicity
of the “monopole continuum” [55,56,60].

To demonstrate the enhanced spectral periodicity of the
“monopole” continuum, we introduce a 2-“monopole” scat-
tering state |A⟩ ≡ |qA; zA⟩, where qA is the total crystal
momentum of this state and zA represents the remaining
quantum number that specifies the state [55]. The translation
symmetry fractionalization acts on the individual “monopole”
such that

Tµ|A⟩ ≡ T m
µ (1)T m

µ (2)|A⟩, (13)

where Tµ is the translation operator for the system, and 1 and
2 refer to the two “monopoles” of this state. By translating one
“monopole” by the basis lattice vector aµ, we obtain another

three 2-“monopole” scattering states,

|B⟩ = T m
1 (1)|A⟩, (14)

|C⟩ = T m
2 (1)|A⟩, (15)

|D⟩ = T m
3 (1)|A⟩. (16)

We are ready to compare the translation eigenvalues of these
four states by making use of Eq. (12) and obtain the following
relations for the crystal momentum of the these states:

qB = qA + 2π (100), (17)

qC = qA + 2π (010), (18)

qD = qA + 2π (001). (19)

Since these scattering states have the same energy, we
thus conclude that the “monopole continuum” of the two
“monopole” excitations have the following enlarged spectral
periodicity such that

Lm(q) = Lm(q + 2π (100)),

= Lm(q + 2π (010)),

= Lm(q + 2π (001)), (20)

where Lm(q) is the lower excitation edge of the “monopole”
continuum for a given momentum q because there is a finite
energy cost to excite two “monopoles.” This enhanced spectral
periodicity also appears in the upper excitation edges of the
“monopole” continuum. There is no symmetry breaking nor
any static magnetic order in the system, but the spectral
periodicity is enhanced. The spectrum is invariant if one
translates the spectrum by 2π (100), 2π (010), or 2π (001). This
is very different from the conventional case where the spectral
periodicity is given by the reciprocal lattice vectors, 2π (1̄11),
2π (11̄1), and 2π (111̄), for the fcc Bravais lattice. Therefore,
the spectral periodicity enhancement with a fold Brillouin zone
is a strong indication of the fractionalization in the system.
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FIG. 1. (a) Diamond lattice (in thin line) and its dual diamond lattice (in thick line). The physical spin is located in the middle of the
link on the diamond lattice. The spinons (“monopoles”) hop on the diamond (dual diamond) lattice. The colored dots correspond to the
tetrahedral centers of the pyrochlore lattice. (b) Every buckled hexagon on the dual diamond lattice traps a “π” background dual U (1) flux that
is experienced by the “monopole” hopping. I and II refer to the two sublattices of the dual diamond lattice. In (c) and (d), the background flux
trapped in the (dashed) parallelogram is identical to the flux in the (colored) buckled hexagon.

the dual diamond lattice with [13]

2π⟨curl α⟩ = πηr ≡ π (mod 2π ). (11)

To see the effect of the background dual gauge flux,
we introduce the translation operator for the “magnetic
monopole,” T m

µ , that translates the “monopole” by a ba-
sis lattice vector aµ of the dual diamond lattice, where
µ = 1,2,3, and a1 = 1

2 (011),a2 = 1
2 (101),a3 = 1

2 (110). We
use the cubic coordinate system and set the lattice constant
to unity throughout the paper. As the “magnetic monopole”
hops successively through the parallelogram defined by
T m

µ T m
ν (T m

µ )−1(T m
ν )−1 with µ ̸= ν, the “monopole” experi-

ences an identical Aharonov-Bohm flux as the background
flux trapped in the hexagon plaquette of the dual diamond
lattice (see Fig. 1). This is because of the lattice geometry of
the diamond lattice. Thus, we have the following algebraic
relation:

T m
µ T m

ν

(
T m

µ

)−1(
T m

ν

)−1 = eiπ = −1. (12)

This algebraic relation means the lattice translation symme-
try is realized projectively for the “magnetic monopoles.”
The translation symmetry fractionalization for the “magnetic
monopole” is intimately connected to the spectral periodicity
of the “monopole continuum” [55,56,60].

To demonstrate the enhanced spectral periodicity of the
“monopole” continuum, we introduce a 2-“monopole” scat-
tering state |A⟩ ≡ |qA; zA⟩, where qA is the total crystal
momentum of this state and zA represents the remaining
quantum number that specifies the state [55]. The translation
symmetry fractionalization acts on the individual “monopole”
such that

Tµ|A⟩ ≡ T m
µ (1)T m

µ (2)|A⟩, (13)

where Tµ is the translation operator for the system, and 1 and
2 refer to the two “monopoles” of this state. By translating one
“monopole” by the basis lattice vector aµ, we obtain another

three 2-“monopole” scattering states,

|B⟩ = T m
1 (1)|A⟩, (14)

|C⟩ = T m
2 (1)|A⟩, (15)

|D⟩ = T m
3 (1)|A⟩. (16)

We are ready to compare the translation eigenvalues of these
four states by making use of Eq. (12) and obtain the following
relations for the crystal momentum of the these states:

qB = qA + 2π (100), (17)

qC = qA + 2π (010), (18)

qD = qA + 2π (001). (19)

Since these scattering states have the same energy, we
thus conclude that the “monopole continuum” of the two
“monopole” excitations have the following enlarged spectral
periodicity such that

Lm(q) = Lm(q + 2π (100)),

= Lm(q + 2π (010)),

= Lm(q + 2π (001)), (20)

where Lm(q) is the lower excitation edge of the “monopole”
continuum for a given momentum q because there is a finite
energy cost to excite two “monopoles.” This enhanced spectral
periodicity also appears in the upper excitation edges of the
“monopole” continuum. There is no symmetry breaking nor
any static magnetic order in the system, but the spectral
periodicity is enhanced. The spectrum is invariant if one
translates the spectrum by 2π (100), 2π (010), or 2π (001). This
is very different from the conventional case where the spectral
periodicity is given by the reciprocal lattice vectors, 2π (1̄11),
2π (11̄1), and 2π (111̄), for the fcc Bravais lattice. Therefore,
the spectral periodicity enhancement with a fold Brillouin zone
is a strong indication of the fractionalization in the system.
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Motivated by the recent developments on cluster Mott insulating materials such as the cluster magnet
LiZn2Mo3O8, we consider the strong plaquette charge ordered regime of the extended Hubbard model on a
breathing kagome lattice and reveal the properties of the cluster Mottness. The plaquette charge order arises from
the intersite charge interaction and the collective motion of three localized electrons on the hexagon plaquettes.
This model leads naturally to a reduction of the local moments by 2/3, as observed in LiZn2Mo3O8. Furthermore,
at low temperatures, each hexagon plaquette contains an extra orbital-like degree of freedom in addition to
the remaining spin 1/2. We explore the consequence of this emergent orbital degree of freedom. We point out
the interaction between the local moments is naturally described by a Kugel-Khomskii spin-orbital model. We
develop a parton approach and suggest a spin-liquid ground state with spinon Fermi surfaces for this model. We
further predict an emergent orbital order when the system is under a strong magnetic field. Various experimental
consequences for LiZn2Mo3O8 are discussed, including an argument that the charge ordering must be short ranged
if the charge per Mo is slightly off stoichiometric.

DOI: 10.1103/PhysRevB.97.035124

I. INTRODUCTION

Spin, charge, and orbital are three basic degrees of freedom
of condensed matter systems, and their mutual interaction,
interplay, and entanglement cover the major topics of modern
condensed matter physics [1–4]. In conventional Mott insula-
tors, electron charge localization creates local spin moments
at the lattice sites, and the orbital degree of freedom becomes
active when the local crystal symmetry allows the degeneracy
of atomic orbitals [3]. Recently, the cluster Mott insulator has
emerged as a new type of Mott insulator in which the electrons
are localized inside the cluster [5–13]. As a result, the keen
interplay between the charge and the spin degrees of freedom
in cluster Mott insulators (CMIs) is often quite different from a
conventional Mott insulator [5–8]. In particular, it was shown
that the two-dimensional CMIs of the kagome system [6,8]
with an extended Hubbard model at 1/6 electron filling may de-
velop a plaquette charge order [14–18] on hexagon plaquettes
(see Fig. 1). This plaquette charge order immediately impacts
the spin degree of freedom and modulates the spin properties
by reconstructing the spin state within each plaquette. Such a
charge-driven spin-state reconstruction is one crucial property
of the CMIs in this system [6].

Well-known examples of cluster magnets include
LiZn2Mo3O8, Li2InMo3O8 [19], and ScZnMo3O8 [20],
where the Mo electrons are in the CMIs with the Mo
electrons localized in the smaller triangular clusters of the
distorted kagome lattice (see Fig. 1) [21–25]. The distortion

*gangchen.physics@gmail.com

is such that the up and down triangles have different bond
lengths and the lattice is often referred to as the breathing
kagome. Interestingly, the material LiZn2Mo3O8 experiences
two Curie regimes with distinct Curie-Weiss temperatures
and Curie constants [22,23] in which the low-temperature
Curie constant is 1/3 of the high-temperature one and the
low-temperature Curie-Weiss temperature is much smaller
than the high-temperature one. Moreover, the system remains
magnetically disordered down to the lowest measured
temperature, and inelastic neutron scattering does observe

FIG. 1. The breathing kagome lattice with plaquette charge order.
The solid (dashed) lines represent the up (down) triangles. The
plaquette charge order hosts three electrons that are resonating on
hexagons with circles marked, and a1,a2 are two lattice vectors that
connect neighboring resonating hexagons. R labels the resonating
hexagon, and 1–6 label the six vertices.
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a continuum of excitations [21]. This is consistent with the
proposal of a spin-liquid ground state in this material. Partly
inspired by the experiments in LiZn2Mo3O8, we here explore
the strong plaquette charge ordered regime of the CMI on
the breathing kagome system where the electron charges are
localized on resonating hexagon plaquettes (see Fig. 1). In
addition to the on-site repulsion, a large intersite repulsion is
assumed which forbids the occupation of neighboring sites.
This leads to plaquette charge ordering and the expansion of
the unit cell, formed by a triangular lattice of hexagons marked
by the circles in Fig 1. The low-lying degree of freedom is
the collective resonant rotation of the three occupied sites on
each hexagon (see Fig. 2). To put this model in the context
of the earlier model by Flint and Lee [26], there the intersite
repulsion is assumed to be weak and each up triangle is
occupied by one electron, and no correlation is assumed
around the hexagons. The up triangles form a triangular
lattice and a lattice distortion is postulated which creates a
honeycomb lattice of up triangles, with the spin at the center
of the honeycomb relatively isolated and responsible for the
local moments at low temperatures. Note that both for this
model and the current model, a tripling of the unit cell is
assumed. This has been searched for by x-ray scattering but
so far no new diffraction peaks have been observed. This issue
will be discussed in the Discussion section, where we point
out that if the system is slightly off stoichiometric, domain
walls will form between the ordered states. Due to a special
feature of domain walls forming a honeycomb lattice [27], it
can be shown that long-range order is always destroyed, i.e.,
the system can only have short-range order. This may help
explain the absence of new diffraction spots, and both models
may remain viable. We also point out that the Flint-Lee model
addressed only the freeze-out of 2/3 of the spins at low
temperatures, and the ultimate fate of the local moments that
remained was not discussed. In the current model, we address
both the freeze-out and the true ground state of this system
and argue that due to an emergent orbital degree of freedom,
a spin-liquid state may form as the true ground state.

We also compare the current paper with a previous work
on a similar model [6] which treats the weak plaquette order
regime. The current treatment of the CMI is analogous to the
strong Mott regime of a conventional Mott insulator, while the
previous weak plaquette charge ordered regime [6] is similar to
the weak Mott regime (i.e., close to the Mott transition) where
the charge fluctuation may destabilize the spin order and lead to
a spin liquid [28,29]. We find that in the strong charge ordered
regime, the charge-spin interaction appears in a much more
straightforward and transparent manner. We explain the local
moment reconstruction in the presence of a strong plaquette
charge order on the hexagon, giving rise to a net spin-1/2
local moment on the hexagon. We point out that there exists
an emergent orbital-like degree of freedom. These emergent
orbitals are twofold degenerate and protected by the symmetry
of the hexagon plaquette. The natural model that describes
the interaction between the effective spin and the emergent
orbital on the hexagon plaquette is the Kugel-Khomskii ex-
change model [30]. As a comparison with conventional Mott
insulators, the Kugel-Khomskii model is used to describe the
exchange interaction between the local moments when an
orbital degeneracy exists for the atomic orbitals [30].

For the Kugel-Khomskii model, we design a fermionic par-
ton approach to represent the effective spin and the emergent
orbital degrees of freedom, and propose a spinon Fermi-surface
spin-liquid ground state. We point out that the emergent orbital
generically creates nondegenerate spinon bands and allows
interband particle-hole excitations. Specifically, the interband
particle-hole excitations would manifest as a finite-energy
spinon continuum at the ! point in inelastic neutron scattering
and optical measurements. Polarizing the spin degrees of
freedom by applying strong magnetic fields, we obtain a simple
120◦ compass model for the emergent orbital interaction. We
further predict that the system selects a specific orbital order
via order by quantum disorder and supports a nearly gapless
pseudo-Goldstone mode. These results establish a different
perspective on the Mottness of the CMI.

The paper is organized as follows. In Sec. II, we introduce
the extended Hubbard model and explain the plaquette charge
order. In Sec. III, we explain the local moment structure
of the resonating hexagon in the strong plaquette charge
ordered regime and point out the fundamental existence
of the emergent orbital degree of freedom. In Sec. IV, we
derive the Kugel-Khomskii model that describes the exchange
interaction between the spin and the orbital on the triangular
lattice formed by the resonating hexagons. In Sec. V, we
design a parton construction and suggest the features of
the spinon continuum for the proposed spinon Fermi-surface
ground state. In Sec. VI, we explain the emergent orbital order,
quantum order by disorder effect of the compass model for the
orbitals, and the orbital excitation when the spin is polarized
by an external magnetic field. In Sec. VII, we discuss the
relevance of this model to LiZn2Mo3O8 and explore various
experimental consequences. We end with a broad view on the
cluster Mott insulating materials.

II. THE MICROSCOPIC MODEL AND THE PLAQUETTE
CHARGE ORDER

We start with the extended Hubbard model on the breathing
kagome lattice (see Fig. 1),

H = −
∑

⟨ij⟩∈u

(t1c
†
iσ cjσ + H.c.) −

∑

⟨ij⟩∈d

(t2c
†
iσ cjσ + H.c.)

+
∑

⟨ij⟩∈u

V1ninj +
∑

⟨ij⟩∈d

V2ninj +
∑

i

Uni↑ni↓, (1)

where c
†
iσ (ciσ ) creates (annihilates) an electron with spin σ

(= ↑,↓) at the lattice site i, ni (≡ni↑ + ni↓) is the electron
occupation number, and “u” and “d” refer to the up and
down triangles that are of different sizes, respectively. Here,
t1 and V1 (t2 and V2) are the electron hopping and repulsion
on neighboring sites of the up (down) triangles, respectively.
The electron filling is 1/6, i.e., one electron per unit cell
on the breathing kagome lattice. This model was suggested
to capture the physics of Mo-based cluster magnets such as
LiZn2Mo3O8 in which the Mo atoms form a breathing kagome
lattice [6,19,20].

The Hubbard U interaction for our system merely removes
the electron double occupancy on the lattice site, but it
cannot localize the electrons on the lattice sites. The electrons
can move on the lattice without encountering any double
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moment, this state is dubbed a ferro-dipolar (FDz) state, where
the subindex z refers to the direction of the dipole moment.
With a ferromagnetic dipole moment, this state can be readily
confirmed in a magnetization measurement.

The reduced model in Eq. (4) has an interesting permutation
structure. Using the result on the Iz surface, we can generate
the ground states on the Iy surface with Jy = −1 and the Ix

surface with Jx = −1. As the FDy order of the Iy surface
shares the same symmetry as the FDz order of the Iz surface,
we do not give a repeated discussion here. Although the
permutation trick to relate different regimes seems simple, the
physics on the Ix surface is rather special and unconventional,
and it is this distinction that we clarify below. Clearly, as
⟨T x⟩ is uniform and nonzero on the Ix surface, time-reversal
symmetry is explicitly broken and the ground state is a
ferromagnetic state with a pure FO order. As we compute
within the mean-field theory in the Supplemental Material and
show in Fig. 1, however, the magnetic susceptibility does not
show any divergent behavior. This is very different from what
we would naively expect for a usual ferromagnetic state. The
order parameter ⟨T x⟩ is an octupole moment and does not
couple linearly to the external magnetic field. Therefore, it is
hidden in the usual magnetization measurement [7,8,49].

Despite its invisibility in the usual thermodynamic mea-
surements, one could instead search for the evidence of
the octupolar order by other experimental probes. Since the
octupolar order explicitly breaks time-reversal symmetry,
polar Kerr effect could be used to detect the time-reversal
symmetry breaking [50]. Moreover, inside the FO phase, the
dipole moment τ z flips the octupole moment and creates
octupolar-wave excitations. As τ z directly couples to the
neutron spin, the octupolar-wave excitation can be directly
detected by an inelastic neutron scattering experiment. Using
the Holstein-Primakoff boson transformation [47], we obtain
the octupolar-wave dispersion,

ωk =
[
Jy

∑

i

cos [k · ai] − 3Jx

]1/2

×
[
Jz

∑

i

cos [k · ai] − 3Jx

]1/2

, (5)

where the summation is over the three nearest-
neighboring vectors a1 = (1,0), a2 = (−1/2,

√
3/2), and a3 =

(−1/2,−
√

3/2). One should observe a well-defined octupolar
wave excitation below the FO transition despite the ab-
sence of ordering in the magnetization measurement. This
mode is generically gapped because of the low symmetry
of the model. We depict the octupolar wave excitation in
Fig. 1(d).

Hidden antiferro-octupolar orders. Here we consider the
parameter regimes where the dominant interaction is antifer-
romagnetic. We focus on the Ox surface where the octupolar
exchange coupling Jx is antiferromagnetic and dominant. For
the Oy and the Oz surfaces, one can apply the permutation
on the Ox surface and generate the phase diagrams and the
relevant phases. In the absence of the exchange couplings
Jy and Jz, the Ising exchange interaction Jx is highly
frustrated on the triangular lattice. Any state that satisfies the
“2-plus 1-minus” or “2-minus 1-plus” condition for the T x

configuration on every triangle is the ground state. Therefore,
the ground state is extensively degenerate.

In the XXZ limit of the model with Jy = Jz, the weak
Jy and Jz exchanges allow the system to tunnel quantum
mechanically within the degenerate ground state manifold and
lift the degeneracy via an order by quantum disorder effect
[51–54]. It is well established that the system develops a
supersolid order in a large parameter regime of the XXZ
limit [51–54]. With a supersolid order, the system sponta-
neously breaks the U(1) symmetry with ⟨T y,z⟩ ̸= 0 and the
translation symmetry with ⟨T x⟩ ̸= 0. Moreover, the system has
a three-sublattice magnetic structure in the supersolid phase.

To obtain the phase diagram away from the XXZ limit, we
implement a self-consistent mean-field theory by assuming a
three-sublattice structure for the mean-field ansatz [47]. Via
the mean-field decoupling, we have

HMF = 3
∑

r∈A

∑

µ

[
Jµ(mµ

B + m
µ
C) T µ

r

]

+ 3
∑

r∈B

∑

µ

[
Jµ(mµ

C + m
µ
A) T µ

r

]

+ 3
∑

r∈C

∑

µ

[
Jµ(mµ

A + m
µ
B) T µ

r

]

−h
∑

r

[
cos θ T z

r + sin θ T y
r

]
, (6)

where m
µ
$ = ⟨T µ

r ⟩ is determined self-consistently for r ∈ $-th
sublattice with $ = A,B,C. Such a mean-field theory captures
both the uniform state and the three-sublattice state. The mean-
field phase diagram is depicted in Fig. 2. The FDy and the
FDz phases are the previously mentioned ferro-dipolar orders
with a uniform ⟨T y⟩ ̸= 0 and ⟨T z⟩ ̸= 0, respectively. There is
no octupolar order here. It is the considerable ferro-dipolar
interaction in these regions that competes with the antiferro-
octupolar interaction and completely suppresses any octupolar
order.

FIG. 2. The phase diagram on the Ox surface (Jx = 1). Solid
(dashed) lines indicate first (continuous) order phase transitions.
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the DO doublet is protected by time-reversal symmetry that
switches the two states. This special doublet has been found
in various neodymium (Nd) pyrochlores [34–40], dysprosium
(Dy) pyrochlore [41], osmium (Os) pyrochlore [42,43], erbium
(Er) and ytterbium (Yb) spinels [44,45], and Ce2Sn2O7 [46].
We expect the DO doublet should occur in some of the rare-
earth triangular materials, especially since these rare-earth ions
experience the same D3d crystal field environment.

Generic pseudospin model on a triangular lattice. Here
we explain the interaction between the DO doublets on a
triangular lattice. Due to the twofold degeneracy of the DO
doublet, we introduce the pseudospin operators, τµ, that act
on this DO doublet, τ+ = |"+⟩⟨"−|, τ− = |"−⟩⟨"+|, τ z =
1
2 |"+⟩⟨"+| − 1

2 |"−⟩⟨"−|, where τ± ≡ τ x ± iτ y . To obtain
the exchange interaction, we start with the symmetry properties
of the pseudospins under the space group symmetry.

For all three families of rare-earth triangular lattice mate-
rials [9,24–32], the space group is either R3̄m or P 63/mmc.
All rare-earth ions in these materials have a layered triangular
structure, and the interlayer separation is much larger than the
intralayer lattice constant in most materials. Therefore, it is
sufficient to just keep the interaction within the triangular layer
and ignore the interlayer couplings for most materials, though
the interlayer couplings in certain materials in the R2O2CO3
family may be important. Here we restrict ourselves to the
intralayer interaction. As far as the space group symmetry is
concerned, we only need to retain the symmetry generators
that operate within each triangular layer. It turns out that,
for a single triangular layer, both R3̄m and P 63/mmc space
groups give a threefold rotation around the z axis, C3, a
twofold rotation about the diagonal direction of the oblique
coordinate system, C2, a site inversion symmetry I , and two
lattice translations, Tx and Ty . The symmetry operation on τ

µ
r

is given as [47]

C3 : τ x
r → τ x

C3(r), τ y
r → τ

y
C3(r), τ z

r → τ z
C3(r),

C2 : τ x
r → τ x

C2(r), τ y
r → −τ

y
C2(r), τ z

r → −τ z
C2(r),

I : τ x
r → τ x

I (r), τ y
r → τ

y
I (r), τ z

r → τ z
I (r),

Tx : τ x
r → τ x

Tx (r), τ y
r → τ

y
Tx (r), τ z

r → τ z
Tx (r),

Ty : τ x
r → τ x

Ty (r), τ y
r → τ

y
Ty (r), τ z

r → τ z
Ty (r). (2)

Since the 4f electron wave function is very localized, we
only need to keep the nearest-neighbor interactions. The
most general nearest-neighbor model, allowed by the above
symmetries, is given as

H0 =
∑

⟨rr′⟩

[
Jx τ x

r τ x
r′ + Jy τ y

r τ
y
r′ + Jz τ z

r τ z
r′

+ Jyz

(
τ y

r τ z
r′ + τ z

r τ
y
r′

)]
. (3)

Here we give a few comments on this model. Firstly, the
pseudospin interaction is anisotropic in the pseudospin space
because of the spin-orbit entanglement in the DO doublet.
What is surprising is that the interaction is spatially uniform
and is identical for every bond orientation. This is unusual since
the orbitals have orientations. This remarkable spatial property
comes from the peculiar symmetry property of the DO doublet
in Eq. (2). Secondly, there exists a cross coupling between τ y

and τ z because τ y and τ z transform identically and behave like
the magnetic dipole moments under the space group. Thirdly,
there is no cross coupling between τ x and τ y or τ z because
τ x transforms as an octupole moment under the space group.
This holds even for further neighbor interactions [48]. The Jx

interaction is the interaction between the octupole moments.
Another remarkable property of the DO doublet is the

infinite anisotropy in the Landé g factor when it couples to
an external magnetic field. After including the Zeeman term,
we have the full Hamiltonian H = H0 − h

∑
r τ z

r . Due to the
spatial uniformity of the interaction, we are able to implement a
rotation by an angle θ around the x direction in the pseudospin
space and eliminate the cross coupling between τ y and τ z. The
reduced model is given as

H =
∑

⟨rr′⟩

[
Jx T x

r T x
r′ + Jy T y

r T
y

r′ + Jz T z
r T z

r′ ]

−h
∑

r

[
cosθ T z

r + sin θ T y
r

]
, (4)

where T x = τ x, T y = τ z sin θ + τ y cos θ, T z = τ z cos θ −
τ y sin θ , and Jx,Jy,Jz are defined in the Supplemental Mate-
rial [47]. Note both T y and T z behave like dipole moments.
Like the XYZ model on the pyrochlore lattice [19,20], this
model does not have a sign problem for quantum Monte Carlo
simulation in a large parameter regime, and this is valid on any
other lattices such as the three-dimensional fcc lattice where
DO doublets could exist [7].

Hidden ferro-octupolar orders. We now explain the hidden
multipolar orders of the model in Eq. (4). We start with
the parameter regime on the Iz surface with Jz = −1 [see
Fig. 1(a)]. This regime simply gives a conventional ferromag-
netic ground state with a uniform ⟨T z⟩. Since T z is a dipole

FIG. 1. (a) The six surfaces of the cuboid in the parameter space.
The parameters Jµ are found in the Hamiltonian of Eq. (4). Iµ

(Oµ) refers to the inner (outer) surface with Jµ = −1 (Jµ = 1).
We have marked the Ix and Ox surfaces. (b) The magnetization of
the ferro-dipolar (FD) state on the Iz surface with (Jx,Jy,Jz) =
(−0.5,−0.2,−1) and θ = π/3. The FD transition is at Td = 1.5|Jz|.
(c) Inverse magnetic susceptibility χ zz of the ferro-octupolar (FO)
state on the Ix surface with (Jx,Jy,Jz) = (−1,−0.2,−0.5) and
θ = π/3. The FO transition is at To = 1.5|Jx |. (d) Octupolar-wave
excitation with the same parameters in (c).

201114-2

✤ Quantum criticality from 
    spin-orbit entanglement  
    for 3d antiferromagnets 

2

further splitting within the t
2g

manifold and include this
specific physics for NiRh

2

O
4

later. Because the t
2g

levels
are partially filled, the atomic SOC is active at the linear
order. As the fully-filled e

g

manifold can be neglected,
the local physics for the 3d8 configuration is analogous
to the one for the 4d4/5d4 configurations of Ru4+ or Ir5+

that was discussed in Refs. 17 and 18, where the lat-
ter [18] proposed an excitonic magnetism. For the t

2g

manifold in Fig. 1, the local Hund’s coupling first favors
a total spin S = 1 local moment, and the remaining or-
bital occupation still has a three-fold degeneracy. The to-
tal orbital angular momentum remains unquenched and
can be treated as an e↵ective orbital angular momentum
L with L = 1 in the reduced Hilbert space of the three
orbital occupations. The atomic SOC is then written as

H
soc

= +�
X

i

L
i

· S
i

, (1)

where the sign of SOC is opposite to the case for two
electrons in the t

2g

manifold. The SOC here acts on the
total spin and total orbital angular momentum of the
four electrons and di↵ers from the SOC at the single-
electron level. The SOC entangles the spin and orbitals
and leads to a total moment J in the single-ion limit.
The single-ion ground state is a SOS with J = 0, and the
excited ones are J = 1 triplets and J = 2 quintuplets (see
Fig. 1).

Besides the atomic SOC, the spins and orbitals on
neighboring sites interact with each other through su-
perexchange. Due to the orbital degeneracy, the
exchange interaction should be of Kugel-Khomskii
form [19]. The superexchange path for both first-
neighbor and second-neighbor in NiRh

2

O
4

is given by
Ni-O-Rh-O-Ni and involves five atoms. Thus, the explicit
derivation of superexchange is complicated and is not
quantitatively reliable. Our purpose is not to be quanti-
tatively precise, but is to capture the generic physics of
the competition between the spin-orbital entanglement
and the tendency to magnetic ordering for the Ni-based
magnets and the systems alike. Thus, we consider a sim-
plified superexchange model with only spin interactions.
The exchange model is given as

H
ex

=
X

hiji

J
1

S
i

· S
j

+
X

hhijii

J
2

S
i

· S
j

, (2)

where J
1

(J
2

) is the first (second) neighbor coupling.
This simplified model captures the ordering tendency,
but is not supposed to capture the possibility of an (ex-
otic) quantum spin-orbital liquid with fractionalized ex-
citations [20].

Phase diagram and quantum criticality.—Here we
study the full Hamiltonian that contains both SOC and
superexchange with,

H = H
soc

+ H
ex

. (3)
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ée

l
<latexit sha1_base64="0uiCLFNL6nszwztWcQZ/bgEUou0=">AAACHnicbVDLSgNBEOz1GeMr6tHLYhC9GHZVUE8KXjyJglEhWcLspJMMmX040yvGZb9DvCWf4Rd4Eq/6MYKTxIMmFjQUVd1UU34shSbH+bQmJqemZ2Zzc/n5hcWl5cLK6rWOEsWxzCMZqVufaZQixDIJkngbK2SBL/HGb5/2/Zt7VFpE4RV1YvQC1gxFQ3BGRvKqhA+Unle3EGVWKxSdkjOAPU7cH1I8fnl+7gLARa3wVa1HPAkwJC6Z1hXXiclLmSLBJWb5aqIxZrzNmlgxNGQBai8dPJ3Zm0ap241ImQnJHqi/L1IWaN0JfLMZMGrpUa8v/udVEmoceqkI44Qw5MOgRiJtiux+A3ZdKOQkO4YwroT51eYtphgn09OfFBLtx2xM2dmrxzKiLG/6ckfbGSfl3dJRyb10iif7MEQO1mEDtsGFAziBM7iAMnC4gyfoQs/qWa/Wm/U+XJ2wfm7W4A+sj28s/Kaf</latexit><latexit sha1_base64="z6wdVVLPjiuFSvYz6WfpTmsS0iM=">AAACHnicbVDLSgNBEJyNrxhfUY9eFoPoxbCrgnoy4MWTRDAmkCxhdtJJhsw+nOkV47LfIXoyn+EXeBKv+jGCs4kHk1jQUFR1U025oeAKLevLyMzMzs0vZBdzS8srq2v59Y0bFUSSQYUFIpA1lyoQ3IcKchRQCyVQzxVQdXvnqV+9A6l44F9jPwTHox2ftzmjqCWngXCP8WVjF0AkzXzBKlpDmNPE/iWFs9enFM/lZv670QpY5IGPTFCl6rYVohNTiZwJSHKNSEFIWY92oK6pTz1QTjx8OjF3tNIy24HU46M5VP9exNRTqu+5etOj2FWTXir+59UjbJ84MffDCMFno6B2JEwMzLQBs8UlMBR9TSiTXP9qsi6VlKHuaSwFee8hmVL2D1uhCDDJ6b7syXamSeWgeFq0r6xC6YiMkCVbZJvsEZsckxK5IGVSIYzckkfyQgbGwHgz3o2P0WrG+L3ZJGMwPn8A1IuoZA==</latexit><latexit sha1_base64="z6wdVVLPjiuFSvYz6WfpTmsS0iM=">AAACHnicbVDLSgNBEJyNrxhfUY9eFoPoxbCrgnoy4MWTRDAmkCxhdtJJhsw+nOkV47LfIXoyn+EXeBKv+jGCs4kHk1jQUFR1U025oeAKLevLyMzMzs0vZBdzS8srq2v59Y0bFUSSQYUFIpA1lyoQ3IcKchRQCyVQzxVQdXvnqV+9A6l44F9jPwTHox2ftzmjqCWngXCP8WVjF0AkzXzBKlpDmNPE/iWFs9enFM/lZv670QpY5IGPTFCl6rYVohNTiZwJSHKNSEFIWY92oK6pTz1QTjx8OjF3tNIy24HU46M5VP9exNRTqu+5etOj2FWTXir+59UjbJ84MffDCMFno6B2JEwMzLQBs8UlMBR9TSiTXP9qsi6VlKHuaSwFee8hmVL2D1uhCDDJ6b7syXamSeWgeFq0r6xC6YiMkCVbZJvsEZsckxK5IGVSIYzckkfyQgbGwHgz3o2P0WrG+L3ZJGMwPn8A1IuoZA==</latexit><latexit sha1_base64="m/aI3qn/Xur5imz7yyvVMOE5fy4=">AAACHnicbVDLSsNAFJ34rPVVdekmWEQ3lkQFdVdw40oqWFtoQplMb9qhk4czN2IN+Q639mtciVv9GMFpm4VtPXDhcM69nMvxYsEVWta3sbC4tLyyWlgrrm9sbm2XdnYfVJRIBnUWiUg2PapA8BDqyFFAM5ZAA09Aw+tfj/zGE0jFo/AeBzG4Ae2G3OeMopZcB+EZ01vnCEBk7VLZqlhjmPPEzkmZ5Ki1Sz9OJ2JJACEyQZVq2VaMbkolciYgKzqJgpiyPu1CS9OQBqDcdPx0Zh5qpWP6kdQTojlW/16kNFBqEHh6M6DYU7PeSPzPayXoX7opD+MEIWSTID8RJkbmqAGzwyUwFANNKJNc/2qyHpWUoe5pKgV5/yWbU07OOrGIMCvqvuzZduZJ/bRyVbHvrHL1PC+uQPbJATkmNrkgVXJDaqROGHkkr+SNDI2h8W58GJ+T1QUjv9kjUzC+fgHzK6PV</latexit>

Spin-Orbital Singlet
<latexit sha1_base64="ws8bL2Sj4yqfo0FQhLt0DWuhBLM=">AAACLnicbVA9SwNBEJ3z2/gVtdRiUQQbw50Waifa2KloVEhC2NtM4pK9vWN3TozHFf4aW+38J2IhWvonBDeJhRofDDzem2FmXpgoacn3X7yh4ZHRsfGJycLU9MzsXHF+4dzGqRFYFrGKzWXILSqpsUySFF4mBnkUKrwI2wdd/+IajZWxPqNOgrWIt7RsSsHJSfXiUpXwhrLTROqNIxNK4oqdSt1SSHm9uOqX/B7YIAm+yere8tPJOwAc14uf1UYs0gg1CcWtrQR+QrWMG5JCYV6ophYTLtq8hRVHNY/Q1rLeEzlbc0qDNWPjShPrqT8nMh5Z24lC1xlxurJ/va74n1dJqblTy6ROUkIt+ouaqWIUs24irCENClIdR7gw0t3KxBU3XJDL7dcWku3bfEDZ2GokKqa84PIK/qYzSMqbpd1ScOJy24c+JmAJVmAdAtiGPTiEYyiDgDu4hwd49B69Z+/Ve+u3DnnfM4vwC97HF5wKrGg=</latexit><latexit sha1_base64="cFt4Fu8OXg+/GphyTPDXNCOYID0="></latexit><latexit sha1_base64="cFt4Fu8OXg+/GphyTPDXNCOYID0="></latexit><latexit sha1_base64="YWxoAsxl8/nwcqM0DM5exMmXz0Q=">AAACLnicbVA9SwNBEN3zM8avqKXNYhBsEu60ULugjZ0RjQrJEfY2k2TJ3t6xOyfG4wp/ja35NWIhtv4JwU28Qo0PBh7vzTAzL4ilMOi6r87M7Nz8wmJhqbi8srq2XtrYvDZRojk0eCQjfRswA1IoaKBACbexBhYGEm6CwenYv7kDbUSkrnAYgx+ynhJdwRlaqV3abiHcY3oZC1U514FAJumlUD0JmLVLZbfqTkCniZeTMslRb5c+W52IJyEo5JIZ0/TcGP2UaRRcQlZsJQZixgesB01LFQvB+OnkiYzuWqVDu5G2pZBO1J8TKQuNGYaB7QwZ9s1fbyz+5zUT7B75qVBxgqD496JuIilGdJwI7QgNHOXQEsa1sLdS3meacbS5/dqCYvCQTSmVg04sI8yKNi/vbzrTpLFfPa56F265dpIHVyDbZIfsEY8ckho5I3XSIJw8kifyTEbOyHlx3pz379YZJ5/ZIr/gfHwBLL6qIw==</latexit>
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<latexit sha1_base64="UJHSLLvTYAodR6tjDxuJFtZd89M=">AAACFHicbVDLSgNBEOyNrxhfUY9eFoPgxbCjB/UgBr14jOiaQBLC7OxsMmT2wUyvEEPAH/BqvsaTiDfvfozg5HEwiQUNRVU33V1eIoVGx/m2MguLS8sr2dXc2vrG5lZ+e+dBx6li3GWxjFXVo5pLEXEXBUpeTRSnoSd5xetcD/3KI1daxNE9dhPeCGkrEoFgFI10Rwhp5gtO0RnBnidkQgqXn7mLZwAoN/M/dT9macgjZJJqXSNOgo0eVSiY5P1cPdU8oaxDW7xmaERDrhu90al9+8Aovh3EylSE9kj9O9Gjodbd0DOdIcW2nvWG4n9eLcXgrNETUZIij9h4UZBKG2N7+LftC8UZyq4hlClhbrVZmyrK0KQztQVF56k/pxyd+ImMsZ8zeZHZdOaJe1w8L5Jbp1C6gjGysAf7cAgETqEEN1AGFxi04AVeYWANrDfr3foYt2asycwuTMH6+gV7XqC/</latexit><latexit sha1_base64="vaNyRW+tWdv6qEPCoE6ry6BDiSQ=">AAACFHicbVDLSsNAFJ34rPFVdelmsAhuLIku1IVYdOOyorGFNpTJZNIOnTyYuRFqyCe4tR/gd7gScedW/BjB6WNhWw9cOJxzL/fe4yWCK7Csb2NufmFxabmwYq6urW9sFre271WcSsocGotY1j2imOARc4CDYPVEMhJ6gtW87tXArz0wqXgc3UEvYW5I2hEPOCWgpVvbtlvFklW2hsCzxB6T0sWHeZ68fJnVVvGn6cc0DVkEVBClGraVgJsRCZwKlpvNVLGE0C5ps4amEQmZcrPhqTne14qPg1jqigAP1b8TGQmV6oWe7gwJdNS0NxD/8xopBKduxqMkBRbR0aIgFRhiPPgb+1wyCqKnCaGS61sx7RBJKOh0JrYA7z7mM8rhsZ+IGHJT52VPpzNLnKPyWdm+sUqVSzRCAe2iPXSAbHSCKugaVZGDKGqjJ/SM+kbfeDXejPdR65wxntlBEzA+fwGp9aIz</latexit><latexit sha1_base64="vaNyRW+tWdv6qEPCoE6ry6BDiSQ=">AAACFHicbVDLSsNAFJ34rPFVdelmsAhuLIku1IVYdOOyorGFNpTJZNIOnTyYuRFqyCe4tR/gd7gScedW/BjB6WNhWw9cOJxzL/fe4yWCK7Csb2NufmFxabmwYq6urW9sFre271WcSsocGotY1j2imOARc4CDYPVEMhJ6gtW87tXArz0wqXgc3UEvYW5I2hEPOCWgpVvbtlvFklW2hsCzxB6T0sWHeZ68fJnVVvGn6cc0DVkEVBClGraVgJsRCZwKlpvNVLGE0C5ps4amEQmZcrPhqTne14qPg1jqigAP1b8TGQmV6oWe7gwJdNS0NxD/8xopBKduxqMkBRbR0aIgFRhiPPgb+1wyCqKnCaGS61sx7RBJKOh0JrYA7z7mM8rhsZ+IGHJT52VPpzNLnKPyWdm+sUqVSzRCAe2iPXSAbHSCKugaVZGDKGqjJ/SM+kbfeDXejPdR65wxntlBEzA+fwGp9aIz</latexit><latexit sha1_base64="xreXvjskO1TjVUyk2LTLOIfoDbU=">AAACFHicbVBNS8NAEN3Ur1q/qh69BIvgxZLVg3orevFY0dhCG8pms2mXbjZhdyLUkJ/g1f4aT+LVuz9GcNvmYFsfDDzem2Fmnp8IrsFxvq3Syura+kZ5s7K1vbO7V90/eNJxqihzaSxi1faJZoJL5gIHwdqJYiTyBWv5w9uJ33pmSvNYPsIoYV5E+pKHnBIw0gPGuFetOXVnCnuZ4ILUUIFmr/rTDWKaRkwCFUTrDnYS8DKigFPB8ko31SwhdEj6rGOoJBHTXjY9NbdPjBLYYaxMSbCn6t+JjERajyLfdEYEBnrRm4j/eZ0Uwisv4zJJgUk6WxSmwobYnvxtB1wxCmJkCKGKm1ttOiCKUDDpzG0BPnzJl5SziyARMeQVkxdeTGeZuOf16zq+d2qNmyK4MjpCx+gUYXSJGugONZGLKOqjV/SGxtbYerc+rM9Za8kqZg7RHKyvX8B1nvI=</latexit>

001
<latexit sha1_base64="N4q9cEIXu3jnjcFPasP7yoRNctk=">AAACFHicbVDLSgNBEOyNrxhfUY9eFoPgxTCrB/UgBr14jOiaQBLC7OxsMmT2wUyvEEPAH/BqvsaTiDfvfozg5HEwiQUNRVU33V1eIoVGQr6tzMLi0vJKdjW3tr6xuZXf3nnQcaoYd1ksY1X1qOZSRNxFgZJXE8Vp6Ele8TrXQ7/yyJUWcXSP3YQ3QtqKRCAYRSPdEeI08wVSJCPY88SZkMLlZ+7iGQDKzfxP3Y9ZGvIImaRa1xySYKNHFQomeT9XTzVPKOvQFq8ZGtGQ60ZvdGrfPjCKbwexMhWhPVL/TvRoqHU39ExnSLGtZ72h+J9XSzE4a/RElKTIIzZeFKTSxtge/m37QnGGsmsIZUqYW23WpooyNOlMbUHReerPKUcnfiJj7OdMXs5sOvPEPS6eF51bUihdwRhZ2IN9OAQHTqEEN1AGFxi04AVeYWANrDfr3foYt2asycwuTMH6+gV3/6C9</latexit><latexit sha1_base64="eKZQmqEJdtHfyy5J53J2UnL0Zm0=">AAACFHicbVDLSsNAFJ34rPFVdelmsAhuLIku1IVYdOOyorGFNpTJZNIOnTyYuRFqyCe4tR/gd7gScedW/BjB6WNhWw9cOJxzL/fe4yWCK7Csb2NufmFxabmwYq6urW9sFre271WcSsocGotY1j2imOARc4CDYPVEMhJ6gtW87tXArz0wqXgc3UEvYW5I2hEPOCWgpVvLslvFklW2hsCzxB6T0sWHeZ68fJnVVvGn6cc0DVkEVBClGraVgJsRCZwKlpvNVLGE0C5ps4amEQmZcrPhqTne14qPg1jqigAP1b8TGQmV6oWe7gwJdNS0NxD/8xopBKduxqMkBRbR0aIgFRhiPPgb+1wyCqKnCaGS61sx7RBJKOh0JrYA7z7mM8rhsZ+IGHJT52VPpzNLnKPyWdm+sUqVSzRCAe2iPXSAbHSCKugaVZGDKGqjJ/SM+kbfeDXejPdR65wxntlBEzA+fwGmlqIx</latexit><latexit sha1_base64="eKZQmqEJdtHfyy5J53J2UnL0Zm0=">AAACFHicbVDLSsNAFJ34rPFVdelmsAhuLIku1IVYdOOyorGFNpTJZNIOnTyYuRFqyCe4tR/gd7gScedW/BjB6WNhWw9cOJxzL/fe4yWCK7Csb2NufmFxabmwYq6urW9sFre271WcSsocGotY1j2imOARc4CDYPVEMhJ6gtW87tXArz0wqXgc3UEvYW5I2hEPOCWgpVvLslvFklW2hsCzxB6T0sWHeZ68fJnVVvGn6cc0DVkEVBClGraVgJsRCZwKlpvNVLGE0C5ps4amEQmZcrPhqTne14qPg1jqigAP1b8TGQmV6oWe7gwJdNS0NxD/8xopBKduxqMkBRbR0aIgFRhiPPgb+1wyCqKnCaGS61sx7RBJKOh0JrYA7z7mM8rhsZ+IGHJT52VPpzNLnKPyWdm+sUqVSzRCAe2iPXSAbHSCKugaVZGDKGqjJ/SM+kbfeDXejPdR65wxntlBEzA+fwGmlqIx</latexit><latexit sha1_base64="GUwPCpyyS4iLxCBepd7E17tol9w=">AAACFHicbVBNS8NAEN3Ur1q/qh69BIvgxZLoQb0VvXisaGyhDWWz2bRLN7thdyLUkJ/g1f4aT+LVuz9GcNvmYFsfDDzem2FmXpBwpsFxvq3Syura+kZ5s7K1vbO7V90/eNIyVYR6RHKp2gHWlDNBPWDAaTtRFMcBp61geDvxW89UaSbFI4wS6se4L1jECAYjPTiO26vWnLozhb1M3ILUUIFmr/rTDSVJYyqAcKx1x3US8DOsgBFO80o31TTBZIj7tGOowDHVfjY9NbdPjBLakVSmBNhT9e9EhmOtR3FgOmMMA73oTcT/vE4K0ZWfMZGkQAWZLYpSboO0J3/bIVOUAB8Zgoli5labDLDCBEw6c1uADV/yJeXsIky4hLxi8nIX01km3nn9uu7eO7XGTRFcGR2hY3SKXHSJGugONZGHCOqjV/SGxtbYerc+rM9Za8kqZg7RHKyvX70WnvA=</latexit>111⇤

<latexit sha1_base64="plODLCAYVSJ0NIXkIMo6PxJr0j8=">AAACFnicbVDLSgNBEOz1GddX1KOXxSCIYNjVg3oQg148RnBNIFnD7GSSDJl9MNMrxGXBP/BqvsaT5OrVjxGcPA4msaChqOqmu8uPBVdo29/GwuLS8spqbs1c39jc2s7v7D6qKJGUuTQSkaz6RDHBQ+YiR8GqsWQk8AWr+N3boV95ZlLxKHzAXsy8gLRD3uKUoJZcx3Gejhv5gl20R7DmiTMhheuBefUKAOVG/qfejGgSsBCpIErVHDtGLyUSORUsM+uJYjGhXdJmNU1DEjDlpaNjM+tQK02rFUldIVoj9e9ESgKleoGvOwOCHTXrDcX/vFqCrQsv5WGcIAvpeFErERZG1vBzq8kloyh6mhAqub7Voh0iCUWdz9QW5N2XbE45OWvGIsLM1Hk5s+nME/e0eFl07u1C6QbGyME+HMAROHAOJbiDMrhAgcMbvEPf6BsfxqcxGLcuGJOZPZiC8fULq4ehWw==</latexit><latexit sha1_base64="n3V7zJJsIRfRYEmdIHEowIx4vEU=">AAACFnicbVBNS8NAEN3Urxq/qh69BIsggiXRg3oQi148VjC20May2WzbpZts2J0INeQ3eLVnf4gn6dWb+GMEtx8H2/pg4PHeDDPz/JgzBbb9beQWFpeWV/Kr5tr6xuZWYXvnQYlEEuoSwYWs+VhRziLqAgNOa7GkOPQ5rfrdm6FffaJSMRHdQy+mXojbEWsxgkFLruM4j0fNQtEu2SNY88SZkOLVwLyM377MSrPw0wgESUIaAeFYqbpjx+ClWAIjnGZmI1E0xqSL27SuaYRDqrx0dGxmHWglsFpC6orAGql/J1IcKtULfd0ZYuioWW8o/ufVE2ideymL4gRoRMaLWgm3QFjDz62ASUqA9zTBRDJ9q0U6WGICOp+pLcC6z9mccnwaxFxAZuq8nNl05ol7UrooOXd2sXyNxsijPbSPDpGDzlAZ3aIKchFBDL2gV9Q3+sa78WEMxq05YzKzi6ZgfP4C2h6izw==</latexit><latexit sha1_base64="n3V7zJJsIRfRYEmdIHEowIx4vEU=">AAACFnicbVBNS8NAEN3Urxq/qh69BIsggiXRg3oQi148VjC20May2WzbpZts2J0INeQ3eLVnf4gn6dWb+GMEtx8H2/pg4PHeDDPz/JgzBbb9beQWFpeWV/Kr5tr6xuZWYXvnQYlEEuoSwYWs+VhRziLqAgNOa7GkOPQ5rfrdm6FffaJSMRHdQy+mXojbEWsxgkFLruM4j0fNQtEu2SNY88SZkOLVwLyM377MSrPw0wgESUIaAeFYqbpjx+ClWAIjnGZmI1E0xqSL27SuaYRDqrx0dGxmHWglsFpC6orAGql/J1IcKtULfd0ZYuioWW8o/ufVE2ideymL4gRoRMaLWgm3QFjDz62ASUqA9zTBRDJ9q0U6WGICOp+pLcC6z9mccnwaxFxAZuq8nNl05ol7UrooOXd2sXyNxsijPbSPDpGDzlAZ3aIKchFBDL2gV9Q3+sa78WEMxq05YzKzi6ZgfP4C2h6izw==</latexit><latexit sha1_base64="p8/rFgNpldqH+Nagk+TVsgWSWXk=">AAACFnicbVBNS8NAEN34WetX1aOXxSKIYMnqQb0VvXisYGyhjWWz2bRLNx/sToQa8hu82l/jSbx69ccIbtscbOuDgcd7M8zM8xIpNNj2t7W0vLK6tl7aKG9ube/sVvb2H3WcKsYdFstYtTyquRQRd0CA5K1EcRp6kje9we3Ybz5zpUUcPcAw4W5Ie5EIBKNgJIcQ8nTarVTtmj0BXiSkIFVUoNGt/HT8mKUhj4BJqnWb2Am4GVUgmOR5uZNqnlA2oD3eNjSiIdduNjk2x8dG8XEQK1MR4In6dyKjodbD0DOdIYW+nvfG4n9eO4Xgys1ElKTAIzZdFKQSQ4zHn2NfKM5ADg2hTAlzK2Z9qigDk8/MFhCDl3xBObvwExlDXjZ5kfl0FolzXruukXu7Wr8pgiuhQ3SEThBBl6iO7lADOYghgV7RGxpZI+vd+rA+p61LVjFzgGZgff0C8J6fjg==</latexit>N
ée

l
<latexit sha1_base64="0uiCLFNL6nszwztWcQZ/bgEUou0=">AAACHnicbVDLSgNBEOz1GeMr6tHLYhC9GHZVUE8KXjyJglEhWcLspJMMmX040yvGZb9DvCWf4Rd4Eq/6MYKTxIMmFjQUVd1UU34shSbH+bQmJqemZ2Zzc/n5hcWl5cLK6rWOEsWxzCMZqVufaZQixDIJkngbK2SBL/HGb5/2/Zt7VFpE4RV1YvQC1gxFQ3BGRvKqhA+Unle3EGVWKxSdkjOAPU7cH1I8fnl+7gLARa3wVa1HPAkwJC6Z1hXXiclLmSLBJWb5aqIxZrzNmlgxNGQBai8dPJ3Zm0ap241ImQnJHqi/L1IWaN0JfLMZMGrpUa8v/udVEmoceqkI44Qw5MOgRiJtiux+A3ZdKOQkO4YwroT51eYtphgn09OfFBLtx2xM2dmrxzKiLG/6ckfbGSfl3dJRyb10iif7MEQO1mEDtsGFAziBM7iAMnC4gyfoQs/qWa/Wm/U+XJ2wfm7W4A+sj28s/Kaf</latexit><latexit sha1_base64="z6wdVVLPjiuFSvYz6WfpTmsS0iM=">AAACHnicbVDLSgNBEJyNrxhfUY9eFoPoxbCrgnoy4MWTRDAmkCxhdtJJhsw+nOkV47LfIXoyn+EXeBKv+jGCs4kHk1jQUFR1U025oeAKLevLyMzMzs0vZBdzS8srq2v59Y0bFUSSQYUFIpA1lyoQ3IcKchRQCyVQzxVQdXvnqV+9A6l44F9jPwTHox2ftzmjqCWngXCP8WVjF0AkzXzBKlpDmNPE/iWFs9enFM/lZv670QpY5IGPTFCl6rYVohNTiZwJSHKNSEFIWY92oK6pTz1QTjx8OjF3tNIy24HU46M5VP9exNRTqu+5etOj2FWTXir+59UjbJ84MffDCMFno6B2JEwMzLQBs8UlMBR9TSiTXP9qsi6VlKHuaSwFee8hmVL2D1uhCDDJ6b7syXamSeWgeFq0r6xC6YiMkCVbZJvsEZsckxK5IGVSIYzckkfyQgbGwHgz3o2P0WrG+L3ZJGMwPn8A1IuoZA==</latexit><latexit sha1_base64="z6wdVVLPjiuFSvYz6WfpTmsS0iM=">AAACHnicbVDLSgNBEJyNrxhfUY9eFoPoxbCrgnoy4MWTRDAmkCxhdtJJhsw+nOkV47LfIXoyn+EXeBKv+jGCs4kHk1jQUFR1U025oeAKLevLyMzMzs0vZBdzS8srq2v59Y0bFUSSQYUFIpA1lyoQ3IcKchRQCyVQzxVQdXvnqV+9A6l44F9jPwTHox2ftzmjqCWngXCP8WVjF0AkzXzBKlpDmNPE/iWFs9enFM/lZv670QpY5IGPTFCl6rYVohNTiZwJSHKNSEFIWY92oK6pTz1QTjx8OjF3tNIy24HU46M5VP9exNRTqu+5etOj2FWTXir+59UjbJ84MffDCMFno6B2JEwMzLQBs8UlMBR9TSiTXP9qsi6VlKHuaSwFee8hmVL2D1uhCDDJ6b7syXamSeWgeFq0r6xC6YiMkCVbZJvsEZsckxK5IGVSIYzckkfyQgbGwHgz3o2P0WrG+L3ZJGMwPn8A1IuoZA==</latexit><latexit sha1_base64="m/aI3qn/Xur5imz7yyvVMOE5fy4=">AAACHnicbVDLSsNAFJ34rPVVdekmWEQ3lkQFdVdw40oqWFtoQplMb9qhk4czN2IN+Q639mtciVv9GMFpm4VtPXDhcM69nMvxYsEVWta3sbC4tLyyWlgrrm9sbm2XdnYfVJRIBnUWiUg2PapA8BDqyFFAM5ZAA09Aw+tfj/zGE0jFo/AeBzG4Ae2G3OeMopZcB+EZ01vnCEBk7VLZqlhjmPPEzkmZ5Ki1Sz9OJ2JJACEyQZVq2VaMbkolciYgKzqJgpiyPu1CS9OQBqDcdPx0Zh5qpWP6kdQTojlW/16kNFBqEHh6M6DYU7PeSPzPayXoX7opD+MEIWSTID8RJkbmqAGzwyUwFANNKJNc/2qyHpWUoe5pKgV5/yWbU07OOrGIMCvqvuzZduZJ/bRyVbHvrHL1PC+uQPbJATkmNrkgVXJDaqROGHkkr+SNDI2h8W58GJ+T1QUjv9kjUzC+fgHzK6PV</latexit>

Spin-Orbital Singlet
<latexit sha1_base64="ws8bL2Sj4yqfo0FQhLt0DWuhBLM=">AAACLnicbVA9SwNBEJ3z2/gVtdRiUQQbw50Waifa2KloVEhC2NtM4pK9vWN3TozHFf4aW+38J2IhWvonBDeJhRofDDzem2FmXpgoacn3X7yh4ZHRsfGJycLU9MzsXHF+4dzGqRFYFrGKzWXILSqpsUySFF4mBnkUKrwI2wdd/+IajZWxPqNOgrWIt7RsSsHJSfXiUpXwhrLTROqNIxNK4oqdSt1SSHm9uOqX/B7YIAm+yere8tPJOwAc14uf1UYs0gg1CcWtrQR+QrWMG5JCYV6ophYTLtq8hRVHNY/Q1rLeEzlbc0qDNWPjShPrqT8nMh5Z24lC1xlxurJ/va74n1dJqblTy6ROUkIt+ouaqWIUs24irCENClIdR7gw0t3KxBU3XJDL7dcWku3bfEDZ2GokKqa84PIK/qYzSMqbpd1ScOJy24c+JmAJVmAdAtiGPTiEYyiDgDu4hwd49B69Z+/Ve+u3DnnfM4vwC97HF5wKrGg=</latexit><latexit sha1_base64="cFt4Fu8OXg+/GphyTPDXNCOYID0="></latexit><latexit sha1_base64="cFt4Fu8OXg+/GphyTPDXNCOYID0="></latexit><latexit sha1_base64="YWxoAsxl8/nwcqM0DM5exMmXz0Q=">AAACLnicbVA9SwNBEN3zM8avqKXNYhBsEu60ULugjZ0RjQrJEfY2k2TJ3t6xOyfG4wp/ja35NWIhtv4JwU28Qo0PBh7vzTAzL4ilMOi6r87M7Nz8wmJhqbi8srq2XtrYvDZRojk0eCQjfRswA1IoaKBACbexBhYGEm6CwenYv7kDbUSkrnAYgx+ynhJdwRlaqV3abiHcY3oZC1U514FAJumlUD0JmLVLZbfqTkCniZeTMslRb5c+W52IJyEo5JIZ0/TcGP2UaRRcQlZsJQZixgesB01LFQvB+OnkiYzuWqVDu5G2pZBO1J8TKQuNGYaB7QwZ9s1fbyz+5zUT7B75qVBxgqD496JuIilGdJwI7QgNHOXQEsa1sLdS3meacbS5/dqCYvCQTSmVg04sI8yKNi/vbzrTpLFfPa56F265dpIHVyDbZIfsEY8ckho5I3XSIJw8kifyTEbOyHlx3pz379YZJ5/ZIr/gfHwBLL6qIw==</latexit>
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<latexit sha1_base64="UJHSLLvTYAodR6tjDxuJFtZd89M=">AAACFHicbVDLSgNBEOyNrxhfUY9eFoPgxbCjB/UgBr14jOiaQBLC7OxsMmT2wUyvEEPAH/BqvsaTiDfvfozg5HEwiQUNRVU33V1eIoVGx/m2MguLS8sr2dXc2vrG5lZ+e+dBx6li3GWxjFXVo5pLEXEXBUpeTRSnoSd5xetcD/3KI1daxNE9dhPeCGkrEoFgFI10Rwhp5gtO0RnBnidkQgqXn7mLZwAoN/M/dT9macgjZJJqXSNOgo0eVSiY5P1cPdU8oaxDW7xmaERDrhu90al9+8Aovh3EylSE9kj9O9Gjodbd0DOdIcW2nvWG4n9eLcXgrNETUZIij9h4UZBKG2N7+LftC8UZyq4hlClhbrVZmyrK0KQztQVF56k/pxyd+ImMsZ8zeZHZdOaJe1w8L5Jbp1C6gjGysAf7cAgETqEEN1AGFxi04AVeYWANrDfr3foYt2asycwuTMH6+gV7XqC/</latexit><latexit sha1_base64="vaNyRW+tWdv6qEPCoE6ry6BDiSQ=">AAACFHicbVDLSsNAFJ34rPFVdelmsAhuLIku1IVYdOOyorGFNpTJZNIOnTyYuRFqyCe4tR/gd7gScedW/BjB6WNhWw9cOJxzL/fe4yWCK7Csb2NufmFxabmwYq6urW9sFre271WcSsocGotY1j2imOARc4CDYPVEMhJ6gtW87tXArz0wqXgc3UEvYW5I2hEPOCWgpVvbtlvFklW2hsCzxB6T0sWHeZ68fJnVVvGn6cc0DVkEVBClGraVgJsRCZwKlpvNVLGE0C5ps4amEQmZcrPhqTne14qPg1jqigAP1b8TGQmV6oWe7gwJdNS0NxD/8xopBKduxqMkBRbR0aIgFRhiPPgb+1wyCqKnCaGS61sx7RBJKOh0JrYA7z7mM8rhsZ+IGHJT52VPpzNLnKPyWdm+sUqVSzRCAe2iPXSAbHSCKugaVZGDKGqjJ/SM+kbfeDXejPdR65wxntlBEzA+fwGp9aIz</latexit><latexit sha1_base64="vaNyRW+tWdv6qEPCoE6ry6BDiSQ=">AAACFHicbVDLSsNAFJ34rPFVdelmsAhuLIku1IVYdOOyorGFNpTJZNIOnTyYuRFqyCe4tR/gd7gScedW/BjB6WNhWw9cOJxzL/fe4yWCK7Csb2NufmFxabmwYq6urW9sFre271WcSsocGotY1j2imOARc4CDYPVEMhJ6gtW87tXArz0wqXgc3UEvYW5I2hEPOCWgpVvbtlvFklW2hsCzxB6T0sWHeZ68fJnVVvGn6cc0DVkEVBClGraVgJsRCZwKlpvNVLGE0C5ps4amEQmZcrPhqTne14qPg1jqigAP1b8TGQmV6oWe7gwJdNS0NxD/8xopBKduxqMkBRbR0aIgFRhiPPgb+1wyCqKnCaGS61sx7RBJKOh0JrYA7z7mM8rhsZ+IGHJT52VPpzNLnKPyWdm+sUqVSzRCAe2iPXSAbHSCKugaVZGDKGqjJ/SM+kbfeDXejPdR65wxntlBEzA+fwGp9aIz</latexit><latexit sha1_base64="xreXvjskO1TjVUyk2LTLOIfoDbU=">AAACFHicbVBNS8NAEN3Ur1q/qh69BIvgxZLVg3orevFY0dhCG8pms2mXbjZhdyLUkJ/g1f4aT+LVuz9GcNvmYFsfDDzem2Fmnp8IrsFxvq3Syura+kZ5s7K1vbO7V90/eNJxqihzaSxi1faJZoJL5gIHwdqJYiTyBWv5w9uJ33pmSvNYPsIoYV5E+pKHnBIw0gPGuFetOXVnCnuZ4ILUUIFmr/rTDWKaRkwCFUTrDnYS8DKigFPB8ko31SwhdEj6rGOoJBHTXjY9NbdPjBLYYaxMSbCn6t+JjERajyLfdEYEBnrRm4j/eZ0Uwisv4zJJgUk6WxSmwobYnvxtB1wxCmJkCKGKm1ttOiCKUDDpzG0BPnzJl5SziyARMeQVkxdeTGeZuOf16zq+d2qNmyK4MjpCx+gUYXSJGugONZGLKOqjV/SGxtbYerc+rM9Za8kqZg7RHKyvX8B1nvI=</latexit>

001
<latexit sha1_base64="N4q9cEIXu3jnjcFPasP7yoRNctk=">AAACFHicbVDLSgNBEOyNrxhfUY9eFoPgxTCrB/UgBr14jOiaQBLC7OxsMmT2wUyvEEPAH/BqvsaTiDfvfozg5HEwiQUNRVU33V1eIoVGQr6tzMLi0vJKdjW3tr6xuZXf3nnQcaoYd1ksY1X1qOZSRNxFgZJXE8Vp6Ele8TrXQ7/yyJUWcXSP3YQ3QtqKRCAYRSPdEeI08wVSJCPY88SZkMLlZ+7iGQDKzfxP3Y9ZGvIImaRa1xySYKNHFQomeT9XTzVPKOvQFq8ZGtGQ60ZvdGrfPjCKbwexMhWhPVL/TvRoqHU39ExnSLGtZ72h+J9XSzE4a/RElKTIIzZeFKTSxtge/m37QnGGsmsIZUqYW23WpooyNOlMbUHReerPKUcnfiJj7OdMXs5sOvPEPS6eF51bUihdwRhZ2IN9OAQHTqEEN1AGFxi04AVeYWANrDfr3foYt2asycwuTMH6+gV3/6C9</latexit><latexit sha1_base64="eKZQmqEJdtHfyy5J53J2UnL0Zm0=">AAACFHicbVDLSsNAFJ34rPFVdelmsAhuLIku1IVYdOOyorGFNpTJZNIOnTyYuRFqyCe4tR/gd7gScedW/BjB6WNhWw9cOJxzL/fe4yWCK7Csb2NufmFxabmwYq6urW9sFre271WcSsocGotY1j2imOARc4CDYPVEMhJ6gtW87tXArz0wqXgc3UEvYW5I2hEPOCWgpVvLslvFklW2hsCzxB6T0sWHeZ68fJnVVvGn6cc0DVkEVBClGraVgJsRCZwKlpvNVLGE0C5ps4amEQmZcrPhqTne14qPg1jqigAP1b8TGQmV6oWe7gwJdNS0NxD/8xopBKduxqMkBRbR0aIgFRhiPPgb+1wyCqKnCaGS61sx7RBJKOh0JrYA7z7mM8rhsZ+IGHJT52VPpzNLnKPyWdm+sUqVSzRCAe2iPXSAbHSCKugaVZGDKGqjJ/SM+kbfeDXejPdR65wxntlBEzA+fwGmlqIx</latexit><latexit sha1_base64="eKZQmqEJdtHfyy5J53J2UnL0Zm0=">AAACFHicbVDLSsNAFJ34rPFVdelmsAhuLIku1IVYdOOyorGFNpTJZNIOnTyYuRFqyCe4tR/gd7gScedW/BjB6WNhWw9cOJxzL/fe4yWCK7Csb2NufmFxabmwYq6urW9sFre271WcSsocGotY1j2imOARc4CDYPVEMhJ6gtW87tXArz0wqXgc3UEvYW5I2hEPOCWgpVvLslvFklW2hsCzxB6T0sWHeZ68fJnVVvGn6cc0DVkEVBClGraVgJsRCZwKlpvNVLGE0C5ps4amEQmZcrPhqTne14qPg1jqigAP1b8TGQmV6oWe7gwJdNS0NxD/8xopBKduxqMkBRbR0aIgFRhiPPgb+1wyCqKnCaGS61sx7RBJKOh0JrYA7z7mM8rhsZ+IGHJT52VPpzNLnKPyWdm+sUqVSzRCAe2iPXSAbHSCKugaVZGDKGqjJ/SM+kbfeDXejPdR65wxntlBEzA+fwGmlqIx</latexit><latexit sha1_base64="GUwPCpyyS4iLxCBepd7E17tol9w=">AAACFHicbVBNS8NAEN3Ur1q/qh69BIvgxZLoQb0VvXisaGyhDWWz2bRLN7thdyLUkJ/g1f4aT+LVuz9GcNvmYFsfDDzem2FmXpBwpsFxvq3Syura+kZ5s7K1vbO7V90/eNIyVYR6RHKp2gHWlDNBPWDAaTtRFMcBp61geDvxW89UaSbFI4wS6se4L1jECAYjPTiO26vWnLozhb1M3ILUUIFmr/rTDSVJYyqAcKx1x3US8DOsgBFO80o31TTBZIj7tGOowDHVfjY9NbdPjBLakVSmBNhT9e9EhmOtR3FgOmMMA73oTcT/vE4K0ZWfMZGkQAWZLYpSboO0J3/bIVOUAB8Zgoli5labDLDCBEw6c1uADV/yJeXsIky4hLxi8nIX01km3nn9uu7eO7XGTRFcGR2hY3SKXHSJGugONZGHCOqjV/SGxtbYerc+rM9Za8kqZg7RHKyvX70WnvA=</latexit>111⇤

<latexit sha1_base64="plODLCAYVSJ0NIXkIMo6PxJr0j8=">AAACFnicbVDLSgNBEOz1GddX1KOXxSCIYNjVg3oQg148RnBNIFnD7GSSDJl9MNMrxGXBP/BqvsaT5OrVjxGcPA4msaChqOqmu8uPBVdo29/GwuLS8spqbs1c39jc2s7v7D6qKJGUuTQSkaz6RDHBQ+YiR8GqsWQk8AWr+N3boV95ZlLxKHzAXsy8gLRD3uKUoJZcx3Gejhv5gl20R7DmiTMhheuBefUKAOVG/qfejGgSsBCpIErVHDtGLyUSORUsM+uJYjGhXdJmNU1DEjDlpaNjM+tQK02rFUldIVoj9e9ESgKleoGvOwOCHTXrDcX/vFqCrQsv5WGcIAvpeFErERZG1vBzq8kloyh6mhAqub7Voh0iCUWdz9QW5N2XbE45OWvGIsLM1Hk5s+nME/e0eFl07u1C6QbGyME+HMAROHAOJbiDMrhAgcMbvEPf6BsfxqcxGLcuGJOZPZiC8fULq4ehWw==</latexit><latexit sha1_base64="n3V7zJJsIRfRYEmdIHEowIx4vEU=">AAACFnicbVBNS8NAEN3Urxq/qh69BIsggiXRg3oQi148VjC20May2WzbpZts2J0INeQ3eLVnf4gn6dWb+GMEtx8H2/pg4PHeDDPz/JgzBbb9beQWFpeWV/Kr5tr6xuZWYXvnQYlEEuoSwYWs+VhRziLqAgNOa7GkOPQ5rfrdm6FffaJSMRHdQy+mXojbEWsxgkFLruM4j0fNQtEu2SNY88SZkOLVwLyM377MSrPw0wgESUIaAeFYqbpjx+ClWAIjnGZmI1E0xqSL27SuaYRDqrx0dGxmHWglsFpC6orAGql/J1IcKtULfd0ZYuioWW8o/ufVE2ideymL4gRoRMaLWgm3QFjDz62ASUqA9zTBRDJ9q0U6WGICOp+pLcC6z9mccnwaxFxAZuq8nNl05ol7UrooOXd2sXyNxsijPbSPDpGDzlAZ3aIKchFBDL2gV9Q3+sa78WEMxq05YzKzi6ZgfP4C2h6izw==</latexit><latexit sha1_base64="n3V7zJJsIRfRYEmdIHEowIx4vEU=">AAACFnicbVBNS8NAEN3Urxq/qh69BIsggiXRg3oQi148VjC20May2WzbpZts2J0INeQ3eLVnf4gn6dWb+GMEtx8H2/pg4PHeDDPz/JgzBbb9beQWFpeWV/Kr5tr6xuZWYXvnQYlEEuoSwYWs+VhRziLqAgNOa7GkOPQ5rfrdm6FffaJSMRHdQy+mXojbEWsxgkFLruM4j0fNQtEu2SNY88SZkOLVwLyM377MSrPw0wgESUIaAeFYqbpjx+ClWAIjnGZmI1E0xqSL27SuaYRDqrx0dGxmHWglsFpC6orAGql/J1IcKtULfd0ZYuioWW8o/ufVE2ideymL4gRoRMaLWgm3QFjDz62ASUqA9zTBRDJ9q0U6WGICOp+pLcC6z9mccnwaxFxAZuq8nNl05ol7UrooOXd2sXyNxsijPbSPDpGDzlAZ3aIKchFBDL2gV9Q3+sa78WEMxq05YzKzi6ZgfP4C2h6izw==</latexit><latexit sha1_base64="p8/rFgNpldqH+Nagk+TVsgWSWXk=">AAACFnicbVBNS8NAEN34WetX1aOXxSKIYMnqQb0VvXisYGyhjWWz2bRLNx/sToQa8hu82l/jSbx69ccIbtscbOuDgcd7M8zM8xIpNNj2t7W0vLK6tl7aKG9ube/sVvb2H3WcKsYdFstYtTyquRQRd0CA5K1EcRp6kje9we3Ybz5zpUUcPcAw4W5Ie5EIBKNgJIcQ8nTarVTtmj0BXiSkIFVUoNGt/HT8mKUhj4BJqnWb2Am4GVUgmOR5uZNqnlA2oD3eNjSiIdduNjk2x8dG8XEQK1MR4In6dyKjodbD0DOdIYW+nvfG4n9eO4Xgys1ElKTAIzZdFKQSQ4zHn2NfKM5ADg2hTAlzK2Z9qigDk8/MFhCDl3xBObvwExlDXjZ5kfl0FolzXruukXu7Wr8pgiuhQ3SEThBBl6iO7lADOYghgV7RGxpZI+vd+rA+p61LVjFzgGZgff0C8J6fjg==</latexit>N
ée

l
<latexit sha1_base64="0uiCLFNL6nszwztWcQZ/bgEUou0=">AAACHnicbVDLSgNBEOz1GeMr6tHLYhC9GHZVUE8KXjyJglEhWcLspJMMmX040yvGZb9DvCWf4Rd4Eq/6MYKTxIMmFjQUVd1UU34shSbH+bQmJqemZ2Zzc/n5hcWl5cLK6rWOEsWxzCMZqVufaZQixDIJkngbK2SBL/HGb5/2/Zt7VFpE4RV1YvQC1gxFQ3BGRvKqhA+Unle3EGVWKxSdkjOAPU7cH1I8fnl+7gLARa3wVa1HPAkwJC6Z1hXXiclLmSLBJWb5aqIxZrzNmlgxNGQBai8dPJ3Zm0ap241ImQnJHqi/L1IWaN0JfLMZMGrpUa8v/udVEmoceqkI44Qw5MOgRiJtiux+A3ZdKOQkO4YwroT51eYtphgn09OfFBLtx2xM2dmrxzKiLG/6ckfbGSfl3dJRyb10iif7MEQO1mEDtsGFAziBM7iAMnC4gyfoQs/qWa/Wm/U+XJ2wfm7W4A+sj28s/Kaf</latexit><latexit sha1_base64="z6wdVVLPjiuFSvYz6WfpTmsS0iM=">AAACHnicbVDLSgNBEJyNrxhfUY9eFoPoxbCrgnoy4MWTRDAmkCxhdtJJhsw+nOkV47LfIXoyn+EXeBKv+jGCs4kHk1jQUFR1U025oeAKLevLyMzMzs0vZBdzS8srq2v59Y0bFUSSQYUFIpA1lyoQ3IcKchRQCyVQzxVQdXvnqV+9A6l44F9jPwTHox2ftzmjqCWngXCP8WVjF0AkzXzBKlpDmNPE/iWFs9enFM/lZv670QpY5IGPTFCl6rYVohNTiZwJSHKNSEFIWY92oK6pTz1QTjx8OjF3tNIy24HU46M5VP9exNRTqu+5etOj2FWTXir+59UjbJ84MffDCMFno6B2JEwMzLQBs8UlMBR9TSiTXP9qsi6VlKHuaSwFee8hmVL2D1uhCDDJ6b7syXamSeWgeFq0r6xC6YiMkCVbZJvsEZsckxK5IGVSIYzckkfyQgbGwHgz3o2P0WrG+L3ZJGMwPn8A1IuoZA==</latexit><latexit sha1_base64="z6wdVVLPjiuFSvYz6WfpTmsS0iM=">AAACHnicbVDLSgNBEJyNrxhfUY9eFoPoxbCrgnoy4MWTRDAmkCxhdtJJhsw+nOkV47LfIXoyn+EXeBKv+jGCs4kHk1jQUFR1U025oeAKLevLyMzMzs0vZBdzS8srq2v59Y0bFUSSQYUFIpA1lyoQ3IcKchRQCyVQzxVQdXvnqV+9A6l44F9jPwTHox2ftzmjqCWngXCP8WVjF0AkzXzBKlpDmNPE/iWFs9enFM/lZv670QpY5IGPTFCl6rYVohNTiZwJSHKNSEFIWY92oK6pTz1QTjx8OjF3tNIy24HU46M5VP9exNRTqu+5etOj2FWTXir+59UjbJ84MffDCMFno6B2JEwMzLQBs8UlMBR9TSiTXP9qsi6VlKHuaSwFee8hmVL2D1uhCDDJ6b7syXamSeWgeFq0r6xC6YiMkCVbZJvsEZsckxK5IGVSIYzckkfyQgbGwHgz3o2P0WrG+L3ZJGMwPn8A1IuoZA==</latexit><latexit sha1_base64="m/aI3qn/Xur5imz7yyvVMOE5fy4=">AAACHnicbVDLSsNAFJ34rPVVdekmWEQ3lkQFdVdw40oqWFtoQplMb9qhk4czN2IN+Q639mtciVv9GMFpm4VtPXDhcM69nMvxYsEVWta3sbC4tLyyWlgrrm9sbm2XdnYfVJRIBnUWiUg2PapA8BDqyFFAM5ZAA09Aw+tfj/zGE0jFo/AeBzG4Ae2G3OeMopZcB+EZ01vnCEBk7VLZqlhjmPPEzkmZ5Ki1Sz9OJ2JJACEyQZVq2VaMbkolciYgKzqJgpiyPu1CS9OQBqDcdPx0Zh5qpWP6kdQTojlW/16kNFBqEHh6M6DYU7PeSPzPayXoX7opD+MEIWSTID8RJkbmqAGzwyUwFANNKJNc/2qyHpWUoe5pKgV5/yWbU07OOrGIMCvqvuzZduZJ/bRyVbHvrHL1PC+uQPbJATkmNrkgVXJDaqROGHkkr+SNDI2h8W58GJ+T1QUjv9kjUzC+fgHzK6PV</latexit>

Spin-Orbital Singlet
<latexit sha1_base64="ws8bL2Sj4yqfo0FQhLt0DWuhBLM=">AAACLnicbVA9SwNBEJ3z2/gVtdRiUQQbw50Waifa2KloVEhC2NtM4pK9vWN3TozHFf4aW+38J2IhWvonBDeJhRofDDzem2FmXpgoacn3X7yh4ZHRsfGJycLU9MzsXHF+4dzGqRFYFrGKzWXILSqpsUySFF4mBnkUKrwI2wdd/+IajZWxPqNOgrWIt7RsSsHJSfXiUpXwhrLTROqNIxNK4oqdSt1SSHm9uOqX/B7YIAm+yere8tPJOwAc14uf1UYs0gg1CcWtrQR+QrWMG5JCYV6ophYTLtq8hRVHNY/Q1rLeEzlbc0qDNWPjShPrqT8nMh5Z24lC1xlxurJ/va74n1dJqblTy6ROUkIt+ouaqWIUs24irCENClIdR7gw0t3KxBU3XJDL7dcWku3bfEDZ2GokKqa84PIK/qYzSMqbpd1ScOJy24c+JmAJVmAdAtiGPTiEYyiDgDu4hwd49B69Z+/Ve+u3DnnfM4vwC97HF5wKrGg=</latexit><latexit sha1_base64="cFt4Fu8OXg+/GphyTPDXNCOYID0="></latexit><latexit sha1_base64="cFt4Fu8OXg+/GphyTPDXNCOYID0="></latexit><latexit sha1_base64="YWxoAsxl8/nwcqM0DM5exMmXz0Q=">AAACLnicbVA9SwNBEN3zM8avqKXNYhBsEu60ULugjZ0RjQrJEfY2k2TJ3t6xOyfG4wp/ja35NWIhtv4JwU28Qo0PBh7vzTAzL4ilMOi6r87M7Nz8wmJhqbi8srq2XtrYvDZRojk0eCQjfRswA1IoaKBACbexBhYGEm6CwenYv7kDbUSkrnAYgx+ynhJdwRlaqV3abiHcY3oZC1U514FAJumlUD0JmLVLZbfqTkCniZeTMslRb5c+W52IJyEo5JIZ0/TcGP2UaRRcQlZsJQZixgesB01LFQvB+OnkiYzuWqVDu5G2pZBO1J8TKQuNGYaB7QwZ9s1fbyz+5zUT7B75qVBxgqD496JuIilGdJwI7QgNHOXQEsa1sLdS3meacbS5/dqCYvCQTSmVg04sI8yKNi/vbzrTpLFfPa56F265dpIHVyDbZIfsEY8ckho5I3XSIJw8kifyTEbOyHlx3pz379YZJ5/ZIr/gfHwBLL6qIw==</latexit>

FIG. 2. (Color online.) The phase diagram of the full model
in Eq. (3). It summarizes the competition between the SOC
and the superexchange and captures the frustration of the
exchange. Please refer to the main text about the magnetic
orders.

Once our full model is written, the physics is almost
transparent. Besides the competition between SOC and
superexchange, the exchange frustration would further
complicate our phase diagram. To establish the phase di-
agram, one approach is to start from the (non-magnetic)
SOS and study its magnetic instability to an ordered
state by condensing the excitonic excitation [18]. The
other approach is to start from the ordered state and
tracing the fate of magnetic order parameters as we in-
crease the strength of the SOC. When the magnetic or-
der disappears, the system enters the SOS phase. Both
approaches are quantum and adopted here. Via a Weiss-
type mean-field decoupling, our Hamiltonian becomes

H
MFT

= H
soc

+
X

hiji

J
1

S
i

· hS
j

i +
X

hhijii

J
2

S
i

· hS
j

i, (4)

where hS
j

i is taken as a mean-field order parameter.
To choose a mean-field ansatz for the order parameter,
we start from the limiting case with a vanishing SOC
such that this limit has been well-understood. Here
we consider the antiferromagnetic couplings J

1

> 0 and
J

2

> 0. It was shown that [20–22], for J
2

/J
1

< 1/8, a
Neél state with an order wavevector q = 0 is obtained;
for J

2

/J
1

> 1/8, the ground state has a spin-spiral config-
uration, and the wavevectors of degenerate spirals form
a surface [20] in momentum space and satisfy
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(5)
When J

2

/J
1

is increased from 1/8, this “spiral surface”
emerges and surrounds q = 0, showing a nearly spheri-
cal geometry. It then touches the boundary of the Bril-
louin zone at J

2

/J
1

= 1/4 and develops “holes” on the
boundary of the Brillouin zone, as J

2

/J
1

is further in-
creased. Finally, the spiral surface shrinks to lines cor-
responding to the degenerate ground state manifold of
two decoupled face centered cubic lattices in the limit
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Quantum paramagnet and frustrated quantum criticality in a spin-one
diamond lattice antiferromagnet
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Motivated by the proposal of a topological quantum paramagnet in the diamond lattice antiferromagnet
NiRh2O4, we propose a minimal model to describe the magnetic interaction and properties of the diamond
material with spin-one local moments. Our model includes the first- and second-neighbor Heisenberg interactions
as well as a local single-ion spin anisotropy that is allowed by the spin-one nature of the local moment and the
tetragonal symmetry of the system. We point out that there exists a quantum phase transition from a trivial quantum
paramagnet when single-ion spin anisotropy is dominant to the magnetic ordered states when the exchange is
dominant. Due to the frustrated spin interaction, the magnetic excitation in the quantum paramagnetic state
supports extensively degenerate band minima in the spectra. As the system approaches the transition, extensively
degenerate bosonic modes become critical at the criticality, giving rise to unusual magnetic properties. Our phase
diagram and experimental predictions for different phases provide a guideline for the identification of the ground
state for NiRh2O4. Although our results are fundamentally different from the proposal for topological quantum
paramagnets, they represent interesting possibilities for spin-one diamond lattice antiferromagnets.
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Introduction. The recent theoretical proposal of symmetry
protected topological (SPT) ordered states has sparked wide
interest in the theoretical community [1–25]. The well-known
topological insulator, which was proposed and discovered
earlier, is a noninteracting fermion SPT protected by time
reversal symmetry [26,27]. In contrast, SPTs in bosonic
systems must be stabilized by the interactions [11]. The spin
degrees of freedom with exchange interactions seem to be a
natural candidate for realizing boson SPTs [10]. In fact, the
Haldane spin-one chain is a one-dimensional (1D) boson SPT
and is protected by SO(3) spin rotational symmetry [1,2,28].
The realization of boson SPTs in high dimensions is still
missing. It was suggested that a spin-one diamond lattice
antiferromagnet with frustrated spin interactions may host
a topological quantum paramagnet that is a spin analog of
topological insulators and is protected by time reversal sym-
metry [29]. Quite recently, a diamond lattice antiferromagnet
NiRh2O4 with Ni2+ spin-one local moments was proposed to
fit into the early suggestion [30].

NiRh2O4 is a tetragonal spinel and experiences a structural
phase transition from cubic to tetragonal at T = 380 K
[30,32,33]. As we show in Fig. 1, the magnetic ion Ni2+

has a 3d8 electron configuration, forming a spin S = 1 local
moment and occupying the tetrahedral diamond lattice site.
No signature of magnetic order was observed down to 0.1
K in the magnetic susceptibility and specific heat measure-
ments. Although this might fulfill the basic requirement for
the absence of magnetic order in a topological quantum
paramagnet, an alternative state that is distinct from topo-
logical quantum paramagnets may also provide a consistent
experimental prediction with the current experiments. In this
Rapid Communication, we propose a minimal spin model

*gangchen.physics@gmail.com

for a spin-one diamond lattice with tetragonal distortion and
study the full phase diagram and phase transition of our
model. We do not find the presence of a topological quantum
paramagnet in our phase diagram. Instead, due to strong spin
frustration, the ordered state in our phase diagram can be easily
destabilized and converted into a trivial quantum paramagnet
by moderate single-ion spin anisotropy. We predict that this
seemingly trivial quantum paramagnetic state in a large
parameter regime supports a gapped magnetic excitation that
develops extensively degenerate band minima in the spectrum.
As the quantum paramagnet approaches the phase transition
to a proximate ordered state, the extensively degenerate low-
energy modes become gapless and are responsible for unusual
magnetic properties, such as a linear-T heat capacity at low
temperatures in the vicinity of the transition. In the proximate

FIG. 1. A diamond lattice with J1 and J2 interactions. Due to
the tetragonal symmetry of the lattice, the a and b directions are
not equivalent to the c direction. The Ni2+ ion is in a tetrahedral
environment, so the eg orbitals are lower in energy than the t2g levels.
Tetragonal distortion further splits the two eg orbitals and the three t2g

orbitals, but the degeneracy of the xz and yz orbitals remains intact
under tetragonal distortion. To avoid the orbital degree of freedom,
we here place the xz and yz orbitals above the xy orbitals [31].
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Emergent quantum criticality from spin-orbital entanglement in d8 Mott insulators:

the case of a diamond lattice antiferromagnet
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Motivated by the recent activities on the Ni-based diamond lattice antiferromagnet NiRh2O4,
we theoretically explore on a general ground the unique spin and orbital physics for the Ni2+ ions
with a 3d8 electron configuration in the tetrahedral crystal field environment and on a diamond
lattice Mott insulator. The superexchange interaction between the local moments usually favors
magnetic orders. Due to the particular electron configuration of the Ni2+ ion with a partially filled
upper t2g level and a fully filled lower eg level, the atomic spin-orbit coupling becomes active at the
linear order and would favor a spin-orbital-entangled singlet with quenched local moments in the
single-ion limit. Thus, the spin-orbital entanglement competes with the superexchange and could
drive the system to a quantum critical point that separates spin-orbital singlet and magnetic orders.
We further explore the e↵ects of magnetic field and uniaxial pressure. The non-trivial response to
the magnetic field is intimately tied to the underlying spin-orbital structure of the local moments.
We discuss the future experiments such as doping and pressure, and point out the correspondence
between electron configurations (d8, d9, · · · ) under tetrahedral crystal fields and the ones (d4, d5, · · · )
under octahedral crystal fields.

Introduction.—The spin-orbit coupling (SOC) is a rel-
ativistic e↵ect and plays an important role in our un-
derstanding of the quantum properties of materials with
heavy elements. Contrary to this conventional belief
that explains the recent SOC activities in 4d/5d tran-
sition metal compounds [1], SOC occasionally becomes
important in 3d transition metal materials, especially in
Mott insulators with orbital degeneracies [2]. It is well-
known that, for Mott insulators with spin-only moments,
the atomic SOC enters via high order perturbations of
the Hubbard model and generates the single-ion spin
anisotropy and the Dzyaloshinskii-Moriya interaction [2].
Except certain circumstances, these extra spin anisotropy
and interactions can often be regarded as small pertur-
bations to the (Heisenberg) exchange part of the inter-
actions. When the system has an orbital degeneracy,
however, the atomic SOC should be considered at the
first place and would reconstruct local spin and orbital.
The diamond lattice antiferromagnet FeSc

2

S
4

[3–12] and
various vanadates [2, 13–15] provide physical realizations
of such physics, where the former has an e

g

orbital de-
generacy while the latter has a t

2g

degeneracy.

In this Letter, we study a diamond lattice antifer-
romagnet where the Ni2+ ions are magnetic. We are
partly motivated by the diamond lattice antiferromag-
net NiRh

2

O
4

[16], and explore on a general ground the
consequence of the atomic SOC for Ni2+. We point out
that there exists a keen competition between the atomic
SOC at the single-ion level and the inter-site superex-
change for the 3d transition metal ion like Ni2+. The
spin-orbital singlet (SOS) would give way to the magnet-
ically ordered state through a quantum phase transition
when the superexchange dominates over the atomic SOC.

We further show the e↵ect of the external magnetic field
and the uniaxial pressure on the quantum criticality. The
non-trivial structure of the phase diagram such as the re-
entrant transition under the field directly reveals the un-
derlying spin-orbital structure of the local moments. Al-
though our motivation originates partly from NiRh

2

O
4

,
the physics that we reveal here can well extended to other
magnets with similar crystal field schemes and orbital
configurations. We go beyond the specific case of the
Ni2+ ions, establish the correspondence between di↵er-
ent electron configurations, and suggest the applicability
to many other materials.

The model.—We start with the microscopics of the
Ni2+ ion. In NiRh

2

O
4

, Ni2+ is under the tetrahedral
crystal field. Thus, t

2g

levels are higher in energy than
e
g

levels. As we show in Fig. 1, the lower e
g

levels are
completely filled, and the t

2g

levels are partially filled
with four electrons. For our purpose, we first ignore the

e
g

<latexit sha1_base64="5tg1yaPMghsfheP4otXW+R6xSMo=">AAACFnicbVA9SwNBEJ3zM8avqIWFzWEQbAx3KqhdwEa7CJ4JJEfY29tLlux9sDsnxON+g635NVZia2tn5b8Q3HwUJvHBwOO9GWbmeYngCi3r01hYXFpeWS2sFdc3Nre2Szu7DypOJWUOjUUsGx5RTPCIOchRsEYiGQk9wepe73ro1x+ZVDyO7rGfMDcknYgHnBLUksPaWSdvl8pWxRrBnCf2hJSr+7ffXwBQa5d+Wn5M05BFSAVRqmlbCboZkcipYHmxlSqWENojHdbUNCIhU242OjY3j7Tim0EsdUVojtS/ExkJleqHnu4MCXbVrDcU//OaKQaXbsajJEUW0fGiIBUmxubwc9PnklEUfU0IlVzfatIukYSizmdqC/LeUz6nnJz5iYgxL+q87Nl05olzWrmq2Hc6t3MYowAHcAjHYMMFVOEGauAABQ7P8AIDY2C8Gm/G+7h1wZjM7MEUjI9fSrKi7g==</latexit><latexit sha1_base64="6YKd3cG0iiMIQNARcOxdAqws/a4=">AAACFnicbVC7SgNBFJ2NrxhfUQsLm8Ug2Bh2VVC7gI12EVwTSJY4OzuJQ2Znlpm7Qlz2G2zNl1haia2tP2DpHwhOHoVJPHDhcM693HtPEHOmwXE+rdzc/MLiUn65sLK6tr5R3Ny61TJRhHpEcqnqAdaUM0E9YMBpPVYURwGntaB7MfBrD1RpJsUN9GLqR7gjWJsRDEbyaCvtZK1iySk7Q9izxB2TUmXn6uv7JXdXbRV/mqEkSUQFEI61brhODH6KFTDCaVZoJprGmHRxhzYMFTii2k+Hx2b2vlFCuy2VKQH2UP07keJI614UmM4Iw72e9gbif14jgfaZnzIRJ0AFGS1qJ9wGaQ8+t0OmKAHeMwQTxcytNrnHChMw+UxsAdZ9zGaUw+Mw5hKygsnLnU5nlnhH5fOye21yO0Ej5NEu2kMHyEWnqIIuURV5iCCGntAz6lt969V6s95HrTlrPLONJmB9/AIFw6QV</latexit><latexit sha1_base64="6YKd3cG0iiMIQNARcOxdAqws/a4=">AAACFnicbVC7SgNBFJ2NrxhfUQsLm8Ug2Bh2VVC7gI12EVwTSJY4OzuJQ2Znlpm7Qlz2G2zNl1haia2tP2DpHwhOHoVJPHDhcM693HtPEHOmwXE+rdzc/MLiUn65sLK6tr5R3Ny61TJRhHpEcqnqAdaUM0E9YMBpPVYURwGntaB7MfBrD1RpJsUN9GLqR7gjWJsRDEbyaCvtZK1iySk7Q9izxB2TUmXn6uv7JXdXbRV/mqEkSUQFEI61brhODH6KFTDCaVZoJprGmHRxhzYMFTii2k+Hx2b2vlFCuy2VKQH2UP07keJI614UmM4Iw72e9gbif14jgfaZnzIRJ0AFGS1qJ9wGaQ8+t0OmKAHeMwQTxcytNrnHChMw+UxsAdZ9zGaUw+Mw5hKygsnLnU5nlnhH5fOye21yO0Ej5NEu2kMHyEWnqIIuURV5iCCGntAz6lt969V6s95HrTlrPLONJmB9/AIFw6QV</latexit><latexit sha1_base64="HQUMcVeGcTX+LTT8MkFA/9l4n6E=">AAACFnicbVBNS8NAEN3Ur1q/qh69LBbBiyVRQb0VvHisYLTQhrLZbNulm92wOxFqyG/wan+NJ/Hq1R8juG1zsK0PBh7vzTAzL0wEN+C6305pZXVtfaO8Wdna3tndq+4fPBqVasp8qoTSrZAYJrhkPnAQrJVoRuJQsKdweDvxn56ZNlzJBxglLIhJX/IepwSs5LNu1s+71Zpbd6fAy8QrSA0VaHarP51I0TRmEqggxrQ9N4EgIxo4FSyvdFLDEkKHpM/alkoSMxNk02NzfGKVCPeUtiUBT9W/ExmJjRnFoe2MCQzMojcR//PaKfSug4zLJAUm6WxRLxUYFJ58jiOuGQUxsoRQze2tmA6IJhRsPnNbgA9f8iXl7CJKhIK8YvPyFtNZJv55/abu3bu1xmURXBkdoWN0ijx0hRroDjWRjyji6BW9obEzdt6dD+dz1lpyiplDNAfn6xep7aCI</latexit>

t
2g

<latexit sha1_base64="Y4KSflJm81fsQg7UAims/997SvI=">AAACF3icbVA9SwNBEJ2LXzF+RS0sbA6DYGO4i4LaBWy0i+AlgSSEvc1esmbvg905IR73H2zNr7ESW0s7K/+F4OajMIkPBh7vzTAzz40EV2hZn0ZmaXlldS27ntvY3Nreye/uVVUYS8ocGopQ1l2imOABc5CjYPVIMuK7gtXc/vXIrz0yqXgY3OMgYi2fdAPucUpQS1VsJ6Vu2s4XrKI1hrlI7CkplA9uv78AoNLO/zQ7IY19FiAVRKmGbUXYSohETgVLc81YsYjQPumyhqYB8ZlqJeNrU/NYKx3TC6WuAM2x+nciIb5SA9/VnT7Bnpr3RuJ/XiNG77KV8CCKkQV0ssiLhYmhOXrd7HDJKIqBJoRKrm81aY9IQlEHNLMFef8pXVBOzzqRCDHN6bzs+XQWiVMqXhXtO53bOUyQhUM4ghOw4QLKcAMVcIDCAzzDCwyNofFqvBnvk9aMMZ3ZhxkYH7/e5KM5</latexit><latexit sha1_base64="91aYY8MhUWGQT1gPV4sHM1uHCV8=">AAACF3icbVDLSsNAFJ3UV62vqgsXboJFcGNJqqDuCm50V8G0hTbUyWTajp1MwsyNUEP+wa39EbeuxK1Lf8ClfyA4fSxs64ELh3Pu5d57vIgzBZb1aWQWFpeWV7KrubX1jc2t/PZOVYWxJNQhIQ9l3cOKciaoAww4rUeS4sDjtOb1Lod+7YFKxUJxC/2IugHuCNZmBIOWqtBKSp20lS9YRWsEc57YE1Io711/fb9k7iqt/E/TD0kcUAGEY6UathWBm2AJjHCa5pqxohEmPdyhDU0FDqhyk9G1qXmoFd9sh1KXAHOk/p1IcKBUP/B0Z4Chq2a9ofif14ihfe4mTEQxUEHGi9oxNyE0h6+bPpOUAO9rgolk+laTdLHEBHRAU1uA9R7TOeX4xI94CGlO52XPpjNPnFLxomjf6NxO0RhZtI8O0BGy0RkqoytUQQ4i6B49oWc0MAbGq/FmvI9bM8ZkZhdNwfj4BZn1pGA=</latexit><latexit sha1_base64="91aYY8MhUWGQT1gPV4sHM1uHCV8=">AAACF3icbVDLSsNAFJ3UV62vqgsXboJFcGNJqqDuCm50V8G0hTbUyWTajp1MwsyNUEP+wa39EbeuxK1Lf8ClfyA4fSxs64ELh3Pu5d57vIgzBZb1aWQWFpeWV7KrubX1jc2t/PZOVYWxJNQhIQ9l3cOKciaoAww4rUeS4sDjtOb1Lod+7YFKxUJxC/2IugHuCNZmBIOWqtBKSp20lS9YRWsEc57YE1Io711/fb9k7iqt/E/TD0kcUAGEY6UathWBm2AJjHCa5pqxohEmPdyhDU0FDqhyk9G1qXmoFd9sh1KXAHOk/p1IcKBUP/B0Z4Chq2a9ofif14ihfe4mTEQxUEHGi9oxNyE0h6+bPpOUAO9rgolk+laTdLHEBHRAU1uA9R7TOeX4xI94CGlO52XPpjNPnFLxomjf6NxO0RhZtI8O0BGy0RkqoytUQQ4i6B49oWc0MAbGq/FmvI9bM8ZkZhdNwfj4BZn1pGA=</latexit><latexit sha1_base64="FUAvvrgHwSwr9QwaF+R9kjJUYm0=">AAACF3icbVBNS8NAEN3Ur1q/qh69LBbBiyWpgnorePFYwbSFNpTNZtuu3WzC7kSoIf/Bq/01nsSrR3+M4LbNwbY+GHi8N8PMPD8WXINtf1uFtfWNza3idmlnd2//oHx41NRRoihzaSQi1faJZoJL5gIHwdqxYiT0BWv5o7up33pmSvNIPsI4Zl5IBpL3OSVgpCb00tog65UrdtWeAa8SJycVlKPRK/90g4gmIZNABdG649gxeClRwKlgWambaBYTOiID1jFUkpBpL51dm+EzowS4HylTEvBM/TuRklDrceibzpDAUC97U/E/r5NA/8ZLuYwTYJLOF/UTgSHC09dxwBWjIMaGEKq4uRXTIVGEggloYQvw0Uu2olxcBrGIICuZvJzldFaJW6veVp0Hu1K/yoMrohN0is6Rg65RHd2jBnIRRU/oFb2hiTWx3q0P63PeWrDymWO0AOvrFz4uoNM=</latexit>

CEF
<latexit sha1_base64="ynCtWd9BEVY+4uwusKF79aBHVTY=">AAACGXicbVDLSgNBEOz1GeMr6tHLYhC8GHZVUE8GguIxgjGBZAmzk9lkyOyDmV4hLvsT3oI5+BtePYlXT36M4ORxMIkFDUVVN91dbiS4Qsv6NhYWl5ZXVjNr2fWNza3t3M7ugwpjSVmFhiKUNZcoJnjAKshRsFokGfFdwaputzT0q49MKh4G99iLmOOTdsA9TglqqdZQXlK6vkmbubxVsEYw54k9Ifmrt37/FQDKzdxPoxXS2GcBUkGUqttWhE5CJHIqWJptxIpFhHZJm9U1DYjPlJOM7k3NQ620TC+UugI0R+rfiYT4SvV8V3f6BDtq1huK/3n1GL0LJ+FBFCML6HiRFwsTQ3P4vNniklEUPU0IlVzfatIOkYSijmhqC/LuUzqnHJ+2IhFimtV52bPpzJPKSeGyYN9Z+eIZjJGBfTiAI7DhHIpwC2WoAAUBz/ACA2NgvBsfxue4dcGYzOzBFIyvX8SQpEg=</latexit><latexit sha1_base64="owvUNo9jr7PfZi30NZIOK7Svpjk=">AAACGXicbVBNS8NAEN3Ur1q/qh69LBbBiyVRQT1ZKIrHCsYW2lA22027dPPB7kSoIX/Cm9o/4tWTePXkjxHctD3Y1gcDj/dmmJnnRoIrMM1vI7ewuLS8kl8trK1vbG4Vt3fuVRhLymwailA2XKKY4AGzgYNgjUgy4ruC1d1+NfPrD0wqHgZ3MIiY45NuwD1OCWip0VJeUr26TtvFklk2R8DzxJqQ0uXbc4aXWrv40+qENPZZAFQQpZqWGYGTEAmcCpYWWrFiEaF90mVNTQPiM+Uko3tTfKCVDvZCqSsAPFL/TiTEV2rgu7rTJ9BTs14m/uc1Y/DOnYQHUQwsoONFXiwwhDh7Hne4ZBTEQBNCJde3YtojklDQEU1tAd5/TOeUo5NOJEJICzovazadeWIfly/K1q1ZqpyiMfJoD+2jQ2ShM1RBN6iGbESRQE/oFQ2NofFufBif49acMZnZRVMwvn4BbC6mDQ==</latexit><latexit sha1_base64="owvUNo9jr7PfZi30NZIOK7Svpjk=">AAACGXicbVBNS8NAEN3Ur1q/qh69LBbBiyVRQT1ZKIrHCsYW2lA22027dPPB7kSoIX/Cm9o/4tWTePXkjxHctD3Y1gcDj/dmmJnnRoIrMM1vI7ewuLS8kl8trK1vbG4Vt3fuVRhLymwailA2XKKY4AGzgYNgjUgy4ruC1d1+NfPrD0wqHgZ3MIiY45NuwD1OCWip0VJeUr26TtvFklk2R8DzxJqQ0uXbc4aXWrv40+qENPZZAFQQpZqWGYGTEAmcCpYWWrFiEaF90mVNTQPiM+Uko3tTfKCVDvZCqSsAPFL/TiTEV2rgu7rTJ9BTs14m/uc1Y/DOnYQHUQwsoONFXiwwhDh7Hne4ZBTEQBNCJde3YtojklDQEU1tAd5/TOeUo5NOJEJICzovazadeWIfly/K1q1ZqpyiMfJoD+2jQ2ShM1RBN6iGbESRQE/oFQ2NofFufBif49acMZnZRVMwvn4BbC6mDQ==</latexit><latexit sha1_base64="GJnuOe9AuOnbCFwPixBiUWtZR+U=">AAACGXicbVBNS8NAEN3Ur1q/qh69LBbBiyVRQb0ViuKxgrGFNpTNdtMu3WTD7kSoIX/Cq/01nsSrJ3+M4LbNwbY+GHi8N8PMPD8WXINtf1uFldW19Y3iZmlre2d3r7x/8KRloihzqRRStXyimeARc4GDYK1YMRL6gjX9YX3iN5+Z0lxGjzCKmReSfsQDTgkYqdXRQVq/vcu65YpdtafAy8TJSQXlaHTLP52epEnIIqCCaN127Bi8lCjgVLCs1Ek0iwkdkj5rGxqRkGkvnd6b4ROj9HAglakI8FT9O5GSUOtR6JvOkMBAL3oT8T+vnUBw7aU8ihNgEZ0tChKBQeLJ87jHFaMgRoYQqri5FdMBUYSCiWhuC/DhS7aknF30YiEhK5m8nMV0lol7Xr2pOg92pXaZB1dER+gYnSIHXaEaukcN5CKKBHpFb2hsja1368P6nLUWrHzmEM3B+voFis6hfg==</latexit>

2�
<latexit sha1_base64="MdFR3UMtqkqMMeaHQjzZmQWeIWo=">AAACG3icbVDLSsNAFL3xWeur6tJNsAhuLIkK6sqCG5cVrC22QSaTiQ6dTMLMjVBD/sJNFxZ/w70rcevCjxGcPhbWemDgcM653DvHTwTX6Dhf1szs3PzCYmGpuLyyurZe2ti81nGqKKvTWMSq6RPNBJesjhwFayaKkcgXrOF3zgd+44EpzWN5hd2EeRG5kzzklKCRbrKDtjDhgOS3pbJTcYawp4k7JuWz117vBQBqt6XvdhDTNGISqSBat1wnQS8jCjkVLC+2U80SQjvkjrUMlSRi2suGF+f2rlECO4yVeRLtofp7IiOR1t3IN8mI4L3+6w3E/7xWiuGJl3GZpMgkHS0KU2FjbA++bwdcMYqiawihiptbbXpPFKFoSprYgrzzmE8p+4dBImLMi6Yv928706R+UDmtuJdOuXoEIxRgG3ZgD1w4hipcQA3qQEHCEzxD3+pbb9a79TGKzljjmS2YgPX5A6FupUg=</latexit><latexit sha1_base64="8u9sv1CZjdXqWSaSnZx4DqF4GFY=">AAACG3icbVBNS8NAFNz4WetX1aOXYBG8WJIqqCcLXjxWMLbYhrLZbNqlm03YfRFqyL/womD/h3dP4tWDP0Zw0/ZgWwcWhpl5vLfjxZwpsKxvY2FxaXlltbBWXN/Y3Nou7ezeqSiRhDok4pFselhRzgR1gAGnzVhSHHqcNrz+Ve43HqhULBK3MIipG+KuYAEjGLR0n1bbXId9nHVKZatijWDOE3tCypdvzzle6p3ST9uPSBJSAYRjpVq2FYObYgmMcJoV24miMSZ93KUtTQUOqXLT0cWZeagV3wwiqZ8Ac6T+nUhxqNQg9HQyxNBTs14u/ue1EgjO3ZSJOAEqyHhRkHATIjP/vukzSQnwgSaYSKZvNUkPS0xAlzS1BVj/MZtTjk/8mEeQFXVf9mw788SpVi4q9o1Vrp2iMQpoHx2gI2SjM1RD16iOHESQQE/oFQ2NofFufBif4+iCMZnZQ1Mwvn4BSQynDQ==</latexit><latexit sha1_base64="8u9sv1CZjdXqWSaSnZx4DqF4GFY=">AAACG3icbVBNS8NAFNz4WetX1aOXYBG8WJIqqCcLXjxWMLbYhrLZbNqlm03YfRFqyL/womD/h3dP4tWDP0Zw0/ZgWwcWhpl5vLfjxZwpsKxvY2FxaXlltbBWXN/Y3Nou7ezeqSiRhDok4pFselhRzgR1gAGnzVhSHHqcNrz+Ve43HqhULBK3MIipG+KuYAEjGLR0n1bbXId9nHVKZatijWDOE3tCypdvzzle6p3ST9uPSBJSAYRjpVq2FYObYgmMcJoV24miMSZ93KUtTQUOqXLT0cWZeagV3wwiqZ8Ac6T+nUhxqNQg9HQyxNBTs14u/ue1EgjO3ZSJOAEqyHhRkHATIjP/vukzSQnwgSaYSKZvNUkPS0xAlzS1BVj/MZtTjk/8mEeQFXVf9mw788SpVi4q9o1Vrp2iMQpoHx2gI2SjM1RD16iOHESQQE/oFQ2NofFufBif4+iCMZnZQ1Mwvn4BSQynDQ==</latexit><latexit sha1_base64="2saRJcSUGTVAb6Vl4LZHDXknpDo=">AAACG3icbVBNS8NAFNz4WetX1aOXxSJ4sSRVUG8FLx4rGFtsQ9lsNu3SzSbsvgg15F94tb/Gk3j14I8R3LY52NaBhWFmHu/t+IngGmz721pZXVvf2Cxtlbd3dvf2KweHjzpOFWUujUWs2j7RTHDJXOAgWDtRjES+YC1/eDvxW89MaR7LBxglzItIX/KQUwJGesrqXWHCAcl7lapds6fAy8QpSBUVaPYqP90gpmnEJFBBtO44dgJeRhRwKlhe7qaaJYQOSZ91DJUkYtrLphfn+NQoAQ5jZZ4EPFX/TmQk0noU+SYZERjoRW8i/ud1UgivvYzLJAUm6WxRmAoMMZ58HwdcMQpiZAihiptbMR0QRSiYkua2AB++5EvK+UWQiBjysunLWWxnmbj12k3NuberjcuiuBI6RifoDDnoCjXQHWoiF1Ek0St6Q2NrbL1bH9bnLLpiFTNHaA7W1y9nrKJ+</latexit>

�
<latexit sha1_base64="xIJXYUv5KZeWjZ2ITppeWQ0nkLI=">AAACGnicbVC7SgNBFL3rM8ZX1NJmMQg2hl0V1MqAjWUE10SSJczOTpIhsw9m7gpx2a+wChjwN6ytxNbGjxGcPAqTeGDgcM653DvHiwVXaFnfxsLi0vLKam4tv76xubVd2Nm9V1EiKXNoJCJZ84higofMQY6C1WLJSOAJVvW610O/+sik4lF4h72YuQFph7zFKUEtPaQNobM+yZqFolWyRjDniT0hxau3fv8VACrNwk/Dj2gSsBCpIErVbStGNyUSORUsyzcSxWJCu6TN6pqGJGDKTUcHZ+ahVnyzFUn9QjRH6t+JlARK9QJPJwOCHTXrDcX/vHqCrQs35WGcIAvpeFErESZG5vD3ps8loyh6mhAqub7VpB0iCUXd0dQW5N2nbE45PvVjEWGW133Zs+3ME+ekdFmyb61i+QzGyME+HMAR2HAOZbiBCjhAIYBneIGBMTDejQ/jcxxdMCYzezAF4+sXJkmlDA==</latexit><latexit sha1_base64="ctVlUGGWQmXSN6rG4DW3nGZRanQ=">AAACGnicbVDLSsNAFJ3UV62vqks3g0VwY0lUUFcW3LisYGylDWUymbRDJw9mboQa8hWuFPshrl2JWzd+jOCk7cK2Hhg4nHMu985xY8EVmOa3UVhYXFpeKa6W1tY3NrfK2zt3KkokZTaNRCSbLlFM8JDZwEGwZiwZCVzBGm7/KvcbD0wqHoW3MIiZE5BuyH1OCWjpPm0LnfVI1ilXzKo5Ap4n1oRULt+ec7zUO+WfthfRJGAhUEGUallmDE5KJHAqWFZqJ4rFhPZJl7U0DUnAlJOODs7wgVY87EdSvxDwSP07kZJAqUHg6mRAoKdmvVz8z2sl4J87KQ/jBFhIx4v8RGCIcP577HHJKIiBJoRKrm/FtEckoaA7mtoCvP+YzSlHJ14sIshKui9rtp15Yh9XL6rWjVmpnaIximgP7aNDZKEzVEPXqI5sRFGAntArGhpD4934MD7H0YIxmdlFUzC+fgHN2KbR</latexit><latexit sha1_base64="ctVlUGGWQmXSN6rG4DW3nGZRanQ=">AAACGnicbVDLSsNAFJ3UV62vqks3g0VwY0lUUFcW3LisYGylDWUymbRDJw9mboQa8hWuFPshrl2JWzd+jOCk7cK2Hhg4nHMu985xY8EVmOa3UVhYXFpeKa6W1tY3NrfK2zt3KkokZTaNRCSbLlFM8JDZwEGwZiwZCVzBGm7/KvcbD0wqHoW3MIiZE5BuyH1OCWjpPm0LnfVI1ilXzKo5Ap4n1oRULt+ec7zUO+WfthfRJGAhUEGUallmDE5KJHAqWFZqJ4rFhPZJl7U0DUnAlJOODs7wgVY87EdSvxDwSP07kZJAqUHg6mRAoKdmvVz8z2sl4J87KQ/jBFhIx4v8RGCIcP577HHJKIiBJoRKrm/FtEckoaA7mtoCvP+YzSlHJ14sIshKui9rtp15Yh9XL6rWjVmpnaIximgP7aNDZKEzVEPXqI5sRFGAntArGhpD4934MD7H0YIxmdlFUzC+fgHN2KbR</latexit><latexit sha1_base64="4jO/I4604ifDeZCe+VwazrHe+Mk=">AAACGnicbVBNS8NAFNzUr1q/qh69LBbBiyVRQb0VvHisYGylDWWz2bRLN5uw+yLUkF/h1f4aT+LViz9GcNvmYFsHFoaZeby34yeCa7Dtb6u0srq2vlHerGxt7+zuVfcPHnWcKspcGotYtX2imeCSucBBsHaiGIl8wVr+8Hbit56Z0jyWDzBKmBeRvuQhpwSM9JR1hckGJO9Va3bdngIvE6cgNVSg2av+dIOYphGTQAXRuuPYCXgZUcCpYHmlm2qWEDokfdYxVJKIaS+bHpzjE6MEOIyVeRLwVP07kZFI61Hkm2REYKAXvYn4n9dJIbz2Mi6TFJiks0VhKjDEePJ7HHDFKIiRIYQqbm7FdEAUoWA6mtsCfPiSLylnF0EiYsgrpi9nsZ1l4p7Xb+rOvV1rXBbFldEROkanyEFXqIHuUBO5iKIIvaI3NLbG1rv1YX3OoiWrmDlEc7C+fgHseKJC</latexit>

J = 2
<latexit sha1_base64="apEq37/5BsZJyzzzTT7uS9XwhNs=">AAACFHicbVA9SwNBEJ2LXzF+RS1tDoNgY7iLhVqIARuximhMIAlhb7OXLNm7PXbnhOTIT7A1f8TWSmztLf0hgpuPwiQ+GHi8N8PMPC8SXKPjfFmppeWV1bX0emZjc2t7J7u796hlrCgrUymkqnpEM8FDVkaOglUjxUjgCVbxutcjv/LElOYyfMBexBoBaYfc55Sgke5vLwvNbM7JO2PYi8SdktzVa/+7CAClZvan3pI0DliIVBCta64TYSMhCjkVbJCpx5pFhHZJm9UMDUnAdCMZnzqwj4zSsn2pTIVoj9W/EwkJtO4FnukMCHb0vDcS//NqMfrnjYSHUYwspJNFfixslPbob7vFFaMoeoYQqri51aYdoghFk87MFuTd/mBBOTltRULiIGPycufTWSTlQv4i7945uaIDE6ThAA7hGFw4gyLcQAnKQKENz/ACQ2tovVnv1sekNWVNZ/ZhBtbnL9pioZQ=</latexit><latexit sha1_base64="rOKshGc9vBlUHSuFAVgg07lsK9o=">AAACFHicbVC7SgNBFJ31GeMrPjqbxSDYGHZjoRZiwEKxiuiaQLKE2dlJMmR2Z5m5KyTLfoKt+QsrWyuxtbf0QwQnj8IkHrhwOOde7r3HizhTYFlfxtz8wuLScmYlu7q2vrGZ29p+UCKWhDpEcCGrHlaUs5A6wIDTaiQpDjxOK17ncuBXHqlUTIT30I2oG+BWyJqMYNDS3c15sZHLWwVrCHOW2GOSv3jtfV+97CblRu6n7gsSBzQEwrFSNduKwE2wBEY4TbP1WNEIkw5u0ZqmIQ6ocpPhqal5oBXfbAqpKwRzqP6dSHCgVDfwdGeAoa2mvYH4n1eLoXnqJiyMYqAhGS1qxtwEYQ7+Nn0mKQHe1QQTyfStJmljiQnodCa2AOv00hnl6NiPuIA0q/Oyp9OZJU6xcFawb618yUIjZNAe2keHyEYnqISuURk5iKAWekLPqG/0jTfj3fgYtc4Z45kdNAHj8xfAwaLY</latexit><latexit sha1_base64="rOKshGc9vBlUHSuFAVgg07lsK9o=">AAACFHicbVC7SgNBFJ31GeMrPjqbxSDYGHZjoRZiwEKxiuiaQLKE2dlJMmR2Z5m5KyTLfoKt+QsrWyuxtbf0QwQnj8IkHrhwOOde7r3HizhTYFlfxtz8wuLScmYlu7q2vrGZ29p+UCKWhDpEcCGrHlaUs5A6wIDTaiQpDjxOK17ncuBXHqlUTIT30I2oG+BWyJqMYNDS3c15sZHLWwVrCHOW2GOSv3jtfV+97CblRu6n7gsSBzQEwrFSNduKwE2wBEY4TbP1WNEIkw5u0ZqmIQ6ocpPhqal5oBXfbAqpKwRzqP6dSHCgVDfwdGeAoa2mvYH4n1eLoXnqJiyMYqAhGS1qxtwEYQ7+Nn0mKQHe1QQTyfStJmljiQnodCa2AOv00hnl6NiPuIA0q/Oyp9OZJU6xcFawb618yUIjZNAe2keHyEYnqISuURk5iKAWekLPqG/0jTfj3fgYtc4Z45kdNAHj8xfAwaLY</latexit><latexit sha1_base64="LRevCJvfxipkzkgZqqbcKvwFLl8=">AAACFHicbVBNS8NAEN3Ur1q/qh69BIvgxZLUg3oQCl7EU0VrC20om82mXbrZDbsToYb8BK/213gSr979MYLbNgfb+mDg8d4MM/P8mDMNjvNtFVZW19Y3ipulre2d3b3y/sGTlokitEkkl6rtY005E7QJDDhtx4riyOe05Q9vJn7rmSrNpHiEUUy9CPcFCxnBYKSHu+tar1xxqs4U9jJxc1JBORq98k83kCSJqADCsdYd14nBS7ECRjjNSt1E0xiTIe7TjqECR1R76fTUzD4xSmCHUpkSYE/VvxMpjrQeRb7pjDAM9KI3Ef/zOgmEl17KRJwAFWS2KEy4DdKe/G0HTFECfGQIJoqZW20ywAoTMOnMbQE2fMmWlLPzIOYSspLJy11MZ5k0a9WrqnvvVOpOHlwRHaFjdIpcdIHq6BY1UBMR1Eev6A2NrbH1bn1Yn7PWgpXPHKI5WF+/+x2fBg==</latexit>

J = 1
<latexit sha1_base64="UE/mFTA3He9R3cMarK98RjW5ZeU=">AAACFHicbVA9SwNBEJ3zM8avqKXNYRBsDHdaqIUYsBGriJ4JJEfY29tLlux9sDsnJOF+gq35I7ZWYmtv6Q8R3HwUJvHBwOO9GWbmeYngCi3ry1hYXFpeWc2t5dc3Nre2Czu7jypOJWUOjUUsax5RTPCIOchRsFoiGQk9wape53roV5+YVDyOHrCbMDckrYgHnBLU0v3tpd0sFK2SNYI5T+wJKV699r7LAFBpFn4afkzTkEVIBVGqblsJun0ikVPBsnwjVSwhtENarK5pREKm3P7o1Mw81IpvBrHUFaE5Uv9O9EmoVDf0dGdIsK1mvaH4n1dPMTh3+zxKUmQRHS8KUmFibA7/Nn0uGUXR1YRQyfWtJm0TSSjqdKa2IO/0sjnl+NRPRIxZXudlz6YzT5yT0kXJvrOKZQvGyME+HMAR2HAGZbiBCjhAoQXP8AIDY2C8Ge/Gx7h1wZjM7MEUjM9f2LShkw==</latexit><latexit sha1_base64="18v1LIbiGOtgtHgL83Nh1O6C4zY=">AAACFHicbVC7SgNBFJ2Nrxhf8dHZLAbBxrCrhVqIAQvFKqJrAskSZmcnyZDZnWXmrpAs+wm25i+sbK3E1t7SDxGcPAqTeODC4Zx7ufceL+JMgWV9GZm5+YXFpexybmV1bX0jv7n1oEQsCXWI4EJWPawoZyF1gAGn1UhSHHicVrzO5cCvPFKpmAjvoRtRN8CtkDUZwaClu5tzu5EvWEVrCHOW2GNSuHjtfV+97CTlRv6n7gsSBzQEwrFSNduKwE2wBEY4TXP1WNEIkw5u0ZqmIQ6ocpPhqam5rxXfbAqpKwRzqP6dSHCgVDfwdGeAoa2mvYH4n1eLoXnqJiyMYqAhGS1qxtwEYQ7+Nn0mKQHe1QQTyfStJmljiQnodCa2AOv00hnl8NiPuIA0p/Oyp9OZJc5R8axo31qFkoVGyKJdtIcOkI1OUAldozJyEEEt9ISeUd/oG2/Gu/Exas0Y45ltNAHj8xe/E6LX</latexit><latexit sha1_base64="18v1LIbiGOtgtHgL83Nh1O6C4zY=">AAACFHicbVC7SgNBFJ2Nrxhf8dHZLAbBxrCrhVqIAQvFKqJrAskSZmcnyZDZnWXmrpAs+wm25i+sbK3E1t7SDxGcPAqTeODC4Zx7ufceL+JMgWV9GZm5+YXFpexybmV1bX0jv7n1oEQsCXWI4EJWPawoZyF1gAGn1UhSHHicVrzO5cCvPFKpmAjvoRtRN8CtkDUZwaClu5tzu5EvWEVrCHOW2GNSuHjtfV+97CTlRv6n7gsSBzQEwrFSNduKwE2wBEY4TXP1WNEIkw5u0ZqmIQ6ocpPhqam5rxXfbAqpKwRzqP6dSHCgVDfwdGeAoa2mvYH4n1eLoXnqJiyMYqAhGS1qxtwEYQ7+Nn0mKQHe1QQTyfStJmljiQnodCa2AOv00hnl8NiPuIA0p/Oyp9OZJc5R8axo31qFkoVGyKJdtIcOkI1OUAldozJyEEEt9ISeUd/oG2/Gu/Exas0Y45ltNAHj8xe/E6LX</latexit><latexit sha1_base64="Tgozh/miZ9efGHthpjs0cBcA2QY=">AAACFHicbVBNS8NAEN34WetX1aOXxSJ4sSR6UA9CwYt4qmhsoQ1ls9m0SzebsDsRashP8Gp/jSfx6t0fI7htc7CtDwYe780wM89PBNdg29/W0vLK6tp6aaO8ubW9s1vZ23/Scaooc2ksYtXyiWaCS+YCB8FaiWIk8gVr+oObsd98ZkrzWD7CMGFeRHqSh5wSMNLD3bXTrVTtmj0BXiROQaqoQKNb+ekEMU0jJoEKonXbsRPwMqKAU8HycifVLCF0QHqsbagkEdNeNjk1x8dGCXAYK1MS8ET9O5GRSOth5JvOiEBfz3tj8T+vnUJ46WVcJikwSaeLwlRgiPH4bxxwxSiIoSGEKm5uxbRPFKFg0pnZAnzwki8op+dBImLIyyYvZz6dReKe1a5qzr1drdtFcCV0iI7QCXLQBaqjW9RALqKoh17RGxpZI+vd+rA+p61LVjFzgGZgff0C+W+fBQ==</latexit>

J = 0
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FIG. 1. The electron configuration of Ni2+ under the tetrahe-
dral crystal field. When the atomic spin-orbit coupling (SOC)
is introduced, the electron states in the upper t2g levels are
further split into the spin-orbital-entangled J states. “CEF”
refers to crystal electric field splitting.



Spin-orbit-coupled correlated matter

4

U/t ⌧ 1, a metallic or semi-conducting state at small U may be converted to a semi-metal or to a

TI. What happens when both SOC and correlations are present? Several arguments suggest that

� and U tend to cooperate rather than compete, in generating insulating states. Including SOC

first, we have already remarked upon the splitting of degeneracies and the consequent generation

of multiple narrow bands from relatively mixed ones. The narrow bands generated by SOC are

more susceptible to Mott localization by U , which implies that the horizontal boundary in Figure 1

shifts downward with increasing �. If we include correlations first, the U tends to localize electrons,

diminishing their kinetic energy. Consequently the on-site SOC �, which is insensitive to or even

reduced by delocalization, is relatively enhanced. Indeed, in the strong Mott regime U/t � 1,

one should compare � with the spin exchange coupling J / t2/U , rather than t. As a result, the

vertical boundary shifts to the left for large U/t. We see that there is an intermediate regime in

which insulating states are obtained only from the combined influence of SOC and correlations –

these may be considered spin-orbit assisted Mott insulators. Here we are using the term “Mott

insulator” to denote any state which is insulating by virtue of electron-electron interactions. In

Sec. IV, we will remark briefly on a somewhat philosophical debate as to what should “properly”

be called a Mott insulator.

Terminology aside, an increasing number of experimental systems have appeared in recent

years in this interesting correlated SOC regime. Most prolific are a collection of iridates, weakly

conducting or insulating oxides containing iridium, primarily in the Ir4+ oxidation state. This

FIG. 1. Sketch of a generic phase diagram for electronic materials, in terms of the interaction strength
U/t and SOC �/t. The materials in this review reside on the right half of the figure.

W Witczak, Gang Chen, YB Kim, L Balents, 
Annual Review of Condensed Matter Physics, 2014 
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SEEING THE LIGHT: EXPERIMENTAL SIGNATURES OF . . . PHYSICAL REVIEW B 86, 075154 (2012)

FIG. 12. (Color online) Relationship between the dispersion of
the magnetic photon excitation ω(k) [see Eq. (67)], and the equal
time structure factor S

yy
spin(k,t = 0) [see Eq. (90)] in a quantum spin

ice. The photon dispersion ω(k) in the (h,h,l) plane is plotted above
the corresponding equal-time structure factor, demonstrating how the
photon disperses out of the (suppressed) pinch points at reciprocal
lattice vectors. Note that the intensity of the scattering S

yy
spin(k,t =

0) → 0 where ω(k) → 0 [see Eq. (105)]. Results were calculated
within the lattice field theory [see Eq. (40)] for W = 0, with energy
measured in units such that h̄ = 1.

We can use the spectral representation of Z(k) [see Eq. (80)]
to write

sin (k · hml) sin (k · hnl) = 1
4

4∑

λ=1

ωλ(k)2

KU
ηmλ(k)η∗

λn(k).

(103)

Since the only contributions to the RHS of Eq. (103) come from
the two dispersing modes λ = 1, 2, [see Eq. (78)], Eq. (101)

simplifies to

S
αβ

0 (k) = 1
4

ω(k)2

KU

2∑

λ=1

∑

mn

ηmλ(k)η∗
λn(k)(êm · α̂)(ên · β̂).

(104)

Expanding in the first Brillouin zone, for k ≈ 0, we find
∑

mn

ηmλ(k)η∗
λn(k)(êm · α̂)(ên · β̂) ≈ 1

3

for α = β = y,z and zero otherwise. It follows that

S
yy
spin(k ≈ 0,ω ≈ 0) = Szz

spin(k ≈ 0,ω ≈ 0)

∝ ω(k) δ[ω − ω(k)]. (105)

Therefore at low energies, in the first Brillouin zone,
inelastic neutron scattering experiments will resolve the
magnetic photon excitation as a ghostly, linearly dispersing
peak, with intensity vanishing as I ∝ ω(k), as noted in Ref. 70.
However, at higher energies and in other Brillouin zones, the
momentum dependence of ηmλ(k)η∗

λn(k) in Eq. (104) will
lead to a significant variation in the intensity of the signal
at fixed ω. This behavior is illustrated in Fig. 13, where we
have plotted the intensity of scattering I (k,ω) [see Eq. (91)]
for an experiment performed using unpolarised neutrons. The
corresponding quasielastic scattering, and the path within the
[h,h,l] plane, are shown in Fig. 14.

The phenomenology of this photon excitation stands in
stark contrast to conventional antiferromagnets, whose linearly
dispersing spin-wave excitations have the greatest intensity
approaching the zero-energy magnetic Bragg peak associated
with magnetic order. The difference between these two
problems stems from the fact that the photon is a quantized
excitation ofA, while neutron scattering measures correlations
of B. The lattice curl needed to relate one to the other
introduces additional factors of ζλ(k) in S

αβ
spin(k,ω) [see

Eq. (87)], which leads to the suppression of spectral weight at
low energies.

FIG. 13. (Color online) Ghostly magnetic “photon” excitation as it might appear in an inelastic neutron scattering experiment on a quantum
spin ice realising a quantum ice ground state, for a series of cuts along high symmetry directions in reciprocal space. The prediction of the lattice
field theory H′

U(1) [see Eq. (40)] for inelastic scattering by unpolarized neutrons, I (k,ω) [see Eq. (91)] has been convoluted with a Gaussian of
variance 0.3 c a−1

0 to represent the finite energy resolution of the instrument. The intensity of scattering vanishes as ω → 0 and is strongest at
high energies. Energy is measured in units such that h̄ = 1 and the photon dispersion calculated for W = 0.

075154-17

Emergent gauge photon 
figure courtesy (Benton)



Equivalence of “notations”: three excitations

What does inelastic neutron scattering measure in quantum spin ices?
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We study the U(1) quantum spin liquid on the pyrochlore spin ice systems. For the non-Kramers
doublets such as Pr3+ and Tb3+, we point out that the inelastic neutron scattering result not only
detects the low-energy gauge photon, but also contains the continuum of the “magnetic monopole”
excitations. Unlike the spinons, these “magnetic monopoles” are purely of quantum origin and have
no classical analogue. We further point out that the “magnetic monopole” experiences a background
dual “⇡” flux due to the spin-1/2 nature of the local moment when the “monopole” hops on the
dual diamond lattice. We then predict that the “monopole” continuum has an enhanced spectral
periodicity with a folded Brillouin zone. This prediction can be examined among the existing data on
the non-Kramers doublet spin liquid candidate materials like Pr2TM2O7 and Tb2TM2O7 (with TM
= “transition metal”). The application to the Kramers doublet systems and numerical simulation
is further discussed. Finally, we present a general classification of distinct symmetry enriched U(1)
quantum spin liquids based on the translation symmetry fractionalization patterns of “monopoles”
and “spinons”.

I. INTRODUCTION

There has been a tremendous activity in the field of py-
rochlore ice materials1–43. The motivation of this exciting
area is to search for the three-dimensional U(1) quantum
spin liquid (QSL). The existence of this exotic quantum
phase of matter has been firmly established by the theo-
retical studies of the relevant and even realistic spin mod-
els on the pyrochlore lattice2,3,5,6,12,29,44–47. The exper-
imental confirmation of this interesting phase of matter,
however, is still open. Even if this phase may have al-
ready existed in some candidate materials, the firm iden-
tification of this exotic phase requires the strong mutual
feedback between the experimental progress and the the-
oretical development that provides and clarifies unique
and clear physical observables for the experiments.

The pyrochlore spin ice U(1) QSL is described by the
emergent compact U(1) lattice gauge theory with de-
confined and fractionalized excitations5,44. There are
three elementary excitations, namely, spinon, “magnetic
monopole”, and gauge photon in this U(1) QSL. Here the
nomenclature for the excitations follows from the original
work by Hermele, Fisher and Balents44 (see Table. I). To
confirm the realization of the U(1) QSL, one would need
at least observe one such emergent and exotic excitation.
Inelastic neutron scattering, that is a spectroscopic mea-
surement, is likely to provide much richer information
than any other experimental probes for the pyrochlore
spin ice systems28. It is thus of great importance to un-
derstand how the neutron moments are coupled to the
microscopic degrees of freedom and how the inelastic neu-
tron scattering (INS) results are related to the emergent
and exotic properties of the pyrochlore ice U(1) QSL. It
is this purpose that motivates our work in this paper.

We mainly deal with the non-Kramers doublets in most
parts of this paper. For a non-Kramers doublet4,50 that
is described by a pseudospin-1/2 operator S, the time re-

versal symmetry, T , acts rather peculiarly such that6,13,

T : Sx,y ! Sx,y, Sz ! �Sz. (1)

This property means the neutron moments would merely
pick up the Sz component and naturally measure the Sz

correlation. By examining the connection with the emer-
gent variables such as gauge fields and matter fields, we
point out that, the Sz correlation should detect the gauge
photons as well as the “magnetic monopoles”. The “mag-
netic monopole” is the topological defect of the emer-
gent vector gauge potential in the compact U(1) quan-
tum electrodynamics and has no classical analogue. Even
though the spinon and the “magnetic monopole” can be
interchanged by the electromagnetic duality of the lattice
gauge theory, the “magnetic monopole” might be more
close in spirit to the Dirac’s magnetic monopole

51 from
the original definition and theory of the pyrochlore U(1)
QSL44. The existence of the “magnetic monopole” is one
of the key properties of the compact U(1) lattice gauge
theory52 and the pyrochlore ice U(1) QSL44, and it is
of great importance to demonstrate that the “magnetic
monopole” is a real physical entity rather than any arti-
ficial or fictitious excitation.

Excitations (notation 1) Excitations (notation 2)

Spinon Magnetic monopole

“Magnetic monopole” Electric monopole

Gauge photon Gauge photon

TABLE I. Two di↵erent but equivalent notations for the exci-
tations in the pyrochlore ice U(1) QSL. The notation 1 was in-
troduced in Ref. 44 and is adopted in this paper. The notation
2 can be found in Ref. 48, and the magnetic monopole in this
notation has a classical analogue that is a defect tetrahedron
with either “3-in 1-out” or “1-in 3-out” spin configurations49.

has classical 
analogue

} purely quantum,
no classical analogue

“Magnetic monopole” is probably closer in spirit to Dirac’s monopole (1931). 
One has to confirm that “magnetic monopole” is emergent excitation,  

rather than a fictitious particle.

What piece of experimental info indicates these exotic and emergent particles?

Gang Chen,  PhysRevB, 96, 195127 (2017) 



Spin liquid: fractionalization !
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incoherent elastic scattering at E = 0 meV (dashed line). Error bars, 1 s.d.

Rare-earth triangular lattice spin liquid: a single-crystal study of YbMgGaO4
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YbMgGaO4, a structurally perfect two-dimensional triangular lattice with odd number of electrons
per unit cell and spin-orbit entangled e↵ective spin-1/2 local moments of Yb3+ ions, is likely to
experimentally realize the quantum spin liquid ground state. We report the first experimental
characterization of single crystal YbMgGaO4 samples. Due to the spin-orbit entanglement, the
interaction between the neighboring Yb3+ moments depends on the bond orientations and is highly
anisotropic in the spin space. We carry out the thermodynamic and the electron spin resonance
measurements to confirm the anisotropic nature of the spin interaction as well as to quantitatively
determine the couplings. Our result is a first step towards the theoretical understanding of the
possible quantum spin liquid ground state in this system and sheds new lights on the search of
quantum spin liquids in strong spin-orbit coupled insulators.

PACS numbers: 75.10.Kt, 75.30.Et, 75.30.Gw, 76.30.-v

Introduction.—Recent theoretical advance has ex-
tended the Hastings-Oshikawa-Lieb-Schultz-Mattis theo-
rem to the spin-orbit coupled insulators [1–4]. It is shown
that as long as the time reversal symmetry is preserved,
the ground state of a spin-orbit coupled insulator with
odd number of electrons per unit cell must be exotic [1].
This important result indicates that the ground state of
strong spin-orbit coupled insulators can be a quantum
spin liquid (QSL). QSLs, as we use here, are new phases
of matter that are characterized by properties such as
quantum number fractionalization, intrinsic topological
order, and gapless excitations without symmetry break-
ing [5, 6]. Among the existing QSL candidate materi-
als [7–33], the majority have a relatively weak spin-orbit
coupling (SOC), which only slightly modifies the usual
SU(2) invariant Heisenberg interaction by introducing
weak anisotropic spin interactions such as Dzyaloshinskii-
Moriya interaction [34–36]. It is likely that the QSL
physics in many of these systems mainly originates from
the Heisenberg part of the Hamiltonian rather than
from the anisotropic interactions due to the weak SOC.
The exceptions are the hyperkagome Na

4

Ir
3

O
8

and the
pyrochlore quantum spin ice materials where the non-
Heisenberg spin interaction due to the strong SOC plays
a crucial role in determining the ground state proper-
ties [16, 17, 37–48], though both systems contain even
number of electrons per unit cell. Therefore, it is de-
sirable to have a QSL candidate system in the spin-orbit
coupled insulator that contains odd number electrons per

FIG. 1. (Color online.) The YbMgGaO4 lattice structure (a)
and the triangular lattice in the ab plane (b) formed by the
Yb3+ ions. The inset defines the coordinate system for the
spin components.

unit cell, where the strong SOC leads to a non-Heisenberg
spin Hamiltonian [37, 38, 40, 48–52].

In this Letter, we propose a possible experimental re-
alization of the QSL with strong SOC and odd number
of electrons per unit cell in YbMgGaO

4

, where the Yb3+

ions form a perfect triangular lattice (see Fig. 1). It was
previously found in a powder sample that the system has
a Curie-Weiss temperature ⇥Powder

CW

' �4K but does not
order magnetically down to 60mK [53]. To understand
the nature of the obviously disordered ground state ob-
served in YbMgGaO

4

, it is necessary to have a quantita-
tive understanding of the local moments and microscopic
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