From DMRG to TNS

Ying-Jer Kao
Department of Physics
National Taiwan University

Ministry of Science and Technology

Graphical Representation

$$
A=\left[\begin{array}{c}
A_{1} \\
A_{2} \\
A_{3} \\
\vdots
\end{array}\right] \quad B=\left[\begin{array}{ccc}
B_{11} & \cdots & B_{1 n} \\
\vdots & \ddots & \vdots \\
B_{m 1} & \cdots & B_{m n}
\end{array}\right] \quad \text { scalar } \quad S
$$

vector matrix
$B_{\alpha \beta}$

$T_{\alpha_{1} \alpha_{2} \alpha_{3} \ldots \alpha_{n}}$

Tensor Network States

Matrix Product State /
Tensor Train

Tree Tensor Network /
Hierarchical Tucker

http://tensornetwork.org/

Entanglement

Entanglement area law: $S_{L^{D}} \sim L^{D-1}$

Tensor Network States

Matrix Product State /
Tensor Train

gapped Hamiltonian

MERA

gapless Hamiltonian

MERA

Entanglement Entropy ~ number of bonds cut
For 1D scale invariant MERA, $S \sim \log L$

Entanglement Scaling

	MPS	2d PEPS	TTN	1d MERA	1d bMERA
$S(L)$	$O(1)$	$O(L)$	$O(1)$	$O(\log L)$	$O(L)$
$\langle O\rangle$	exact	approx.	exact	exact	exact
ξ	$<\infty$	$\leq \infty$	$<\infty$	$\leq \infty$	$\leq \infty$
Tensors	any	any	any	unit./isom.	unit./isom.
Can. form	obc, ∞	no	yes	-	-

Algorithms

- Finding ground state wave function $\left|\psi_{g}\right\rangle$
- Imaginary time evolution/ Simple update: consider only local environment (Fast, less accurate)
- Variational update/ Full update: consider the global environment (Slow, more accurate)

Algorithms

- Expectation value $\left\langle\psi_{g}\right| O\left|\psi_{g}\right\rangle$

- Finite PEPS: boundary MPS
- Infinite PEPS: Corner Transfer Matrix, boundary MPS, channel method
- MERA: exact contraction

(c)

MERA: expectation value

MERA: expectation value

MERA: expectation value

MERA: expectation value

Applications

- Quantum Frustrated Magnets (DMRG, iPEPS/iPESS)
- Topological order (DMRG, PESS)
- Disordered system (Tree TN, PEPS)
- Dynamics (Mostly tDMRG/ TDVP)
- Open systems (MPS, PEPS)
- Conformal Field Theory (sMERA, iDMRG)
- Classical Statistical Mechanics (PEPS)
- Boundary CFT (bMERA, DMRG+IBC)
- Holography (MERA, other)
- Quantum Field Theory (MPS, PEPS)
- Quantum-classical programming (MPS)
- Machine Learning (MPS, MERA-like)

Example: (1+1)D Thirring Model

$$
\begin{aligned}
& S_{\mathrm{Th}}[\psi, \bar{\psi}]=\int d^{2} x\left[\bar{\psi} i \gamma^{\mu} \partial_{\mu} \psi-m_{0} \bar{\psi} \psi-\frac{g}{2}\left(\bar{\psi} \gamma_{\mu} \psi\right)^{2}\right] \\
& \bar{H}_{X X Z}=\nu(g)\left[-\frac{1}{2} \sum_{n}^{N-2}\left(S_{n}^{+} S_{n+1}^{-}+S_{n+1}^{+} S_{n}^{-}\right)+a \tilde{m}_{0} \sum_{n}^{N-1}(-1)^{n}\left(S_{n}^{z}+\frac{1}{2}\right)+\Delta(g) \sum_{n}^{N-1}\left(S_{n}^{z}+\frac{1}{2}\right)\left(S_{n+1}^{z}+\frac{1}{2}\right)\right] \\
& \nu(g)=\frac{2 \gamma}{\pi \sin (\gamma)}, \tilde{m}_{0}=\frac{m_{0}}{\nu(g)}, \Delta(g)=\cos (\gamma), \text { with } \gamma=\frac{\pi-g}{2}
\end{aligned}
$$

M.-C. Bañuls, K. Cichy, Y.-J. Kao, C.-J. D. Lin, Y.-P. Lin, D. T.-L. Tan arXiv:1908.04536, accepted in PRD

Example: (1+1)D Thirring Model

M.-C. Bañuls, K. Cichy, H.-T. Hung, Y.-J. Kao, C.-J. D. Lin, unpublished.

Example: Y-junction of TLL wires

- Y-junction of interacting quantum wires: TomonagaLuttinger Liquid wires
- RG fixed point determined by the interaction in the wires and flux in the junction
- DMRG+Infinite BC

Oshikawa et al. J. Stat. Mech. (2006) P02008

RG Fixed Points

Oshikawa et al.J. Stat. Mech. (2006) P02008

$1<g<3$: M Fixed Point

- Time-reversal symmetric unstable fixed point

$$
G_{\alpha \beta}^{M}=\frac{2 g \gamma}{2 g+3 \gamma-3 g \gamma} \frac{e^{2}}{h}, \gamma=\frac{4}{9}
$$

$1<g<3$: M Fixed Point

$$
\text { (20.8 } 0.8
$$

Chung-Yo Luo, Masaki Oshikawa,YJK and Pochung Chen, unpublished.

Example: Kagome AFM+ DM interaction

$$
H=\sum_{\langle i, j\rangle} \mathbf{S}_{i} \cdot \mathbf{S}_{j}+D \hat{z} \cdot\left(\mathbf{S}_{i} \times \mathbf{S}_{j}\right)
$$

- Kagome AF Heisenberg model: Gapless spin liquid
- $D_{z} \approx 0.08 J, D_{\perp} \approx 0.01 J$ in Herbertsmithite
- Infinite Projected-Entangled Symplex State (iPESS)
- $D_{c} \approx 0.012(2) J$, spin liquid physics reported in Herbertsmithite needs to be reaccessed

Outlook: Learn from DL community

- Differentiable Programming

- Automatic differentiation! AutoGrad

Outlook: Learn from DL community

- Automatic differentiation in DL (Tensorflow, PyTorch, Flux/ Zygote)

Outlook: Bring TN computation to HPC

- Tensor network software
- ITensor (C++, Julia) Abelian symmetry/GPU
- mptoolkit (C++) non-Abelian symmetry/GPU
- TeNPy (Python) Abelian symmetry
- uni10 (C++/Python) Abelian symmetry/GPU (v3 work in progress)
- TNSPackage (Fortran 2003)
- TensorKit.jl (Julia) non-Abelian symmetry
- mptensor (C++/Python) non-symmetric/HPC
- TensorNetwork (Python+ Tensorflow) non-symmetric/Cloud computing (CPU+GPU+TPU?)
- Tor10 (python +PyTorch) symmetric/ML frame work (work in progress)
- TensorNetworkAD.j (Julia) Tensor Network with AD

