From DMRG to TNS

Ying-Jer Kao
Department of Physics
National Taiwan University

Graphical Representation

$$A = \begin{bmatrix} A_1 \\ A_2 \\ A_3 \\ \vdots \\ A_N \end{bmatrix} \quad B = \begin{bmatrix} B_{11} & \cdots & B_{1n} \\ \vdots & \ddots & \vdots \\ B_{m1} & \cdots & B_{mn} \end{bmatrix}$$

scalar

vector

matrix

rank-3 tensor rank-*n* tensor

$$A_{\alpha}$$

$$B_{\alpha\beta}$$

$$C_{lphaeta\gamma}$$

$$T_{\alpha_1\alpha_2\alpha_3...\alpha_n}$$

$$\alpha - \beta$$

$$\alpha_1$$
 α_2
 α_3
 α_n

Tensor Network States

Matrix Product State / Tensor Train

Tree Tensor Network / Hierarchical Tucker

Entanglement

MPS

$$S_L \sim L^0 \sim \text{const.}$$

$$S_{L^2} \sim L^1$$

Entanglement area law: $S_{L^D} \sim L^{D-1}$

Tensor Network States

Matrix Product State / Tensor Train

gapped Hamiltonian

gapless Hamiltonian

MERA

Entanglement Entropy ~ number of bonds cut

For 1D scale invariant MERA, $S \sim \log L$

Entanglement Scaling

	MPS	2d PEPS	TTN	1d MERA	1d bMERA
S(L)	O(1)	O(L)	O(1)	$O(\log L)$	O(L)
$ \langle O \rangle $	exact	approx.	exact	exact	exact
\parallel ξ	$<\infty$	$\leq \infty$	$<\infty$	$\leq \infty$	$\leq \infty$
Tensors	any	any	any	unit./isom.	unit./isom. $ $
Can. form	$ obc, \infty $	no	yes	_	_

Matrix Product State / Tensor Train

Tree Tensor Network / Hierarchical Tucker

Algorithms

- ullet Finding ground state wave function $|\psi_g
 angle$
 - Imaginary time evolution/ Simple update: consider only local environment (Fast, less accurate)
 - Variational update/ Full update: consider the global environment (Slow, more accurate)

Algorithms

- Expectation value $\langle \psi_g \,|\, O \,|\, \psi_g \rangle$
 - Finite PEPS: boundary MPS

- Infinite PEPS: Corner Transfer Matrix, boundary MPS, channel method
- MERA: exact contraction

Applications

- Quantum Frustrated Magnets (DMRG, iPEPS/iPESS)
- Classical Statistical Mechanics (PEPS)

 Topological order (DMRG, PESS)

- Boundary CFT (bMERA, DMRG+IBC)
- Disordered system (Tree TN, PEPS)
- Holography (MERA, other)

- Dynamics (Mostly tDMRG/ TDVP)
- Quantum Field Theory (MPS, PEPS)

- Open systems (MPS, PEPS)
- Quantum-classical programming (MPS)

 Conformal Field Theory (sMERA, iDMRG) Machine Learning (MPS, MERA-like)

M.-C. Bañuls, K. Cichy, Y.-J. Kao, C.-J. D. Lin, Y.-P. Lin, D. T.-L. Tan arXiv:1908.04536, accepted in PRD

Example: (1+1)D Thirring Model

M.-C. Bañuls, K. Cichy, H.-T. Hung, Y.-J. Kao, C.-J. D. Lin, unpublished.

Example: Y-junction of TLL wires

Oshikawa et al. J. Stat. Mech. (2006) P02008

- Y-junction of interacting quantum wires: Tomonaga-Luttinger Liquid wires
- RG fixed point determined by the interaction in the wires and flux in the junction
- DMRG+Infinite BC

RG Fixed Points

Oshikawa et al. J. Stat. Mech. (2006) P02008

1 < g < 3: M Fixed Point

Φ

 π

M

 χ_{+}

1 < g < 3

 Time-reversal symmetric unstable fixed point

$$G_{\alpha\beta}^{M} = \frac{2g\gamma_{\alpha\beta}^{\chi_{+}} + gM_{\alpha\beta}^{M} e^{\frac{2g}{2}g} + g\gamma_{\beta}^{\chi_{+}} + 1)}{2g + 3\gamma - 3g\gamma} \frac{e^{\frac{2}{h}}}{h}, \quad \gamma = \frac{4}{9}_{N}$$

1 < g < 3: M Fixed Point

Chung-Yo Luo, Masaki Oshikawa, YJK and Pochung Chen, unpublished.

Example: Kagome AFM+ DM interaction

$$H = \sum_{\langle i,j \rangle} \mathbf{S}_i \cdot \mathbf{S}_j + D\hat{z} \cdot (\mathbf{S}_i \times \mathbf{S}_j)$$

- Kagome AF Heisenberg model: Gapless spin liquid
- $D_{\rm z} pprox 0.08 J, D_{\perp} pprox 0.01 J$ in Herbertsmithite
- Infinite Projected-Entangled Symplex State (iPESS)

• $D_c \approx 0.012(2)J$, spin liquid physics reported in Herbertsmithite needs to be reaccessed

H. J. Liao, et al., Phys. Rev. Lett. 118, 137202 (2017).C.-Y. Lee, B. Normand, YJK Phys. Rev. B 98, 224414 (2018)

Outlook: Learn from DL community

Differentiable Programming

Outlook: Learn from DL community

- AutoFrame offerentiation of the following the force overhead

 Zygote storage overhead
 - Efficient for graph with large fan-out

Hai-Jun Liao, Jin Guo Liu, Lei Wang, and Tao Xiang Phys. Rev. X-9, 031041 Less efficient for large fan-in

Outlook: Bring TN computation to HPC

- Tensor network software
 - <u>ITensor</u> (C++, Julia) Abelian symmetry/GPU
 - mptoolkit (C++) non-Abelian symmetry/GPU
 - <u>TeNPy</u> (Python) Abelian symmetry
 - uni10 (C++/Python) Abelian symmetry/GPU (v3 work in progress)
 - TNSPackage (Fortran 2003)
 - <u>TensorKit.jl</u> (Julia) non-Abelian symmetry
 - mptensor (C++/Python) non-symmetric/HPC
 - <u>TensorNetwork</u> (Python+ Tensorflow) non-symmetric/Cloud computing (CPU+GPU+TPU?)
 - Tor10 (python +PyTorch) symmetric/ML frame work (work in progress)
 - <u>TensorNetworkAD.jl</u> (Julia) Tensor Network with AD