INTRODUCTION TO SUPERCONDUCTIVITY

Anthony J. Leggett

Department of Physics
University of Illinois at Urbana-Champaign, USA

Hong Kong University
Spring 2024

LECTURE 1
GENERALITIES ABOUT SUPERCONDUCTIVITY

<u>Superconductivity – a little history.</u>

1908	Kamerlingh Onnes liquefies helium
1911	Kamerlingh Onnes discovers superconducting in Hg at ${\sim}4K$
1933	Meissner effect
1935-50	phenomenological theory (London, Ginzburg – Landau)
1957	BCS Theory (based on phonon mechanism)
1979	"non-phonon" superconductivity discovered in CeCu ₂ Si ₂
1986	superconductivity at temperature > 90K.
2000-	applications to quantum computing etc.
2015	phonon superconductivity > 200K.

What is superconductivity?

- 3 qualitative differences between superconducting (S) and normal (N) state:
 - 1. Zero resistance (persistent currents)
 - 2. Perfect diamagnetism (Meissner effect)
 - 3. Zero Peltier coefficient

1. Zero resistance:

$$R ext{ of } A\ell \equiv V/I$$
In $S ext{ state, } V = 0 ext{ so } R = 0$

A. Normal state

B. Superconducting state

2. Perfect diamagnetism (Meissner effect):

Is the Meissner effect simply a consequence of zero resistance? No!

(Meissner effect is a thermal equilibrium phenomenon, persistent currents ("zero resistance") are metastable)

3. Zero Peltier coefficient:

 $I \equiv electrical current$

 $Q \equiv \text{heat current}$

In N state, Peltier coefficient $\Pi \propto Q/I|_{\Delta T=0}$ i.e. it is a measure of heat current associated with electrical current: $\Pi \neq 0$ except by pathology.

In S state, $\Pi = 0 \Rightarrow$ transport of electric charge without any transport of heat.

All 3 qualitative properties of S state set in discontinuously at "transition temperature" T_c .

Q: Where do we find superconductivity?

A.: almost everywhere!

- elemental metals (mostly towards middle of periodic table: best conductors (Cu, Ag, Au...) do not become S)
- ordered metallic compounds (e.g. Nb₃Sn)
- disordered alloys
- semiconductors
- materials with complex crystal structures, e.g. fullerenes, ferropnictides, cuprates, organics
 (e.g.) C₆₀ LaOFeAs YBCO "ET"

however,

- (a) no well-confirmed case of a material which is insulating in its N state becoming S.
- (b) Superconductivity very insensitive to nonmagnetic disorder but rapidly destroyed by magnetic impurities.

(example: pure Mo has $T_c \sim 1K$, but a few ppm of Fe(magnetic) drives T_c to 0).

Isotope effect: in "classic" (pre-1979) superconductors (only), usually $T_c \propto M^{-1/2}$.

isotopic mass

Temperature-dependence:

(Anticipate: in mixed phase, magnetic field "punches through" in form of vortices, bulk remains S).

Elemental metals and some simple compounds type I, "exotic" materials almost invariably type II.

