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Reminder: the vector potential A(r, t) in classical mechanics

The classical equation of motion of a charged particle in an

electric field E and magnetic field B:

dv
m-—. = e(E+vXB)+ Fon—em

where F,on—em are any forces of non-electromagnetic origin.
But for many purposes (e.g. stat. mech.) need to express this in
terms of Hamiltonian formalism:

How to find H (1, p) s.t.
dr B 0H dp oH
dt Jp dt or

Solution: define A(r, t) s.t.

0A(r,t)
ot
where @ (rt) is the static Coulomb potential

(hence V X E = —0B/0t)
and put $

Faraday

2
H(r,p) = (p — eA(r, t)) /2m 4+ e®d(rt) + V,pn—em
This works! (see Appendix )

E(r,t) = —Vd(rt) — ) B(r,t) =V x A(r,t)

dr oH 1

note: v = = op m(p—eA("‘ t)) (+p/m)

so firstterm in H(r,p) = Emv2 = kinetic energy (only)!
(but expressed in terms of p and A).
|
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Quantum mechanics:

p —» —ihV so KE is

Hy = (—ihV — ed)?/2m

and so, including possible V,,,,_orm + €@ (1rt) = V(1t),

1
A = —(—ihV — eA(rt))" + V(rt)
2Zm

In CM (classical mechanics), all effects obtainable
from A(r,t) are equally derivable only from E(r,t)
and B(r,t) = vector potential redundant. In QM
(quantum mechanics) this is not true: A(r,t) has a
“life of its own”!
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Single charged particle on thin ring

If field B through ring is uniform, can take
. 1
A= A0 ,Ap = EBR
then flux ® through ring is
® = nR*B = Ag = ®/2nR

TISE fory = Y(0) is

_ 1 )
HY(0) = op (—ihV — eA(r)) Y(0) = EY(H)

1
only nonzero component of Vis Vg = F¥T

and only component of A is Ag, so

h? 0
S R? (‘l% — 74 ) Y(8) = EY(0)

or putting Ag = ®/2nR and defining ®.F = h/e X

(single-particle)
flux quantum

h? 0 o
S (—%— P/ ) $(6) = EY(6)

= L, (angular momentum in units of &)

Formal solution is

Y(0) = exp ikl , (k arbitrary), E =

2

2
gz (K= @/95")
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However, crucial point:

Y (6) must be single-valued, i.e. Y (8 + 2nm) = Y(0) (SVBC)

single-valuedness
boundary condition

Hence, only allowed values of k are integers £ = 0,+1,+2 ...

(i.e. angular momentum L, is quantized in units of A)
Thus,

Y,(0) =expitf, £=0,11,12,

TE(, ®)

Je(®@) = :1—2 (¢ — @/D.") =slope of curve
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Ford < ®.,F/2,
GShas?=0=>pyg=L,/R=¢YA/R=0

However, recall that in the presence of A, v # p/m! In fact,

v=(p—eAd)/m=vy=—edyg/m

= jo = evg = —(e?/m)A, # 0in general, in
sense to produce magnetic field opposite to
B = GS is diamagnetic,

jo =—(e*/m)Ag #= 0
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Single charged particle on ring: two notes

1. What is the situation in classical mechanics?

We can still formally introduce € = L,/h and write
2

2
2mR? (f - q)/q)gp)

E(£) =

but now there is no restriction on £ (SVBC is
meaningless since no wave function!) so now GS

always corresponds to £ = ®/®.F, equivalent to
jo = 0 (no diamagnetism).

Agh V Ag
| tT t

—

(0

However, consider time-dependent problem:
since motion is restricted to ring, Lorenz force
v X B is irrelevant and we have by Newton Il

dv — CE(t) = 0A
Mar = ° ~ T %¢
or
dVg N dAg
™ T a4



Ifatt=0 vg =0,
solution is simply

v (t) = —(e/m)Ap(t)

and in particular fort = ¢,

Ag,jo 1
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slow decay of jg
due to scattering

vg = —(e/m)Ar = jg = —(e?/m)As
as in Quantum Mechanics case. However, this is not
the lowest-energy state, so scattering by walls, etc. will

reduce jy to zero.

2. Aharonov-Bohm effect

note induced diamagnetic current depends only on

total trapped flux @, not
on details of how it is
produced. Hence in
particular can get
nonzero effect even
when B = 0 everywhere
onring! (e.g. B produced
by “Helmholtz coil”)




Atomic diamagnetism Sustech 2.8

To the extent that argument applies, velocity of
electrons at radius r given by

v(r) = —eA(r)/m
but electric current density j(r) = n(rr)ev(r), hence

—n(r)e?

jr) = ——A(r)

Circulating current produces magnetic field AB
opposite to the original one. = diamagnetism.

Estimate order of magnitude of AB at nucleus:
ignoring factors of 2w, etc., A~BR;,

]~R62wj ~ — RczltnezA/m, or since anwva (no. of
electrons in

~(—Ze?/mR,)A~ — (Ze? /m)B, atom)

Ze?
and by Biot-Savart AB~ M ~ — ( ,uo> B:
Rat mRg;

(Ze?po/MmRg)~1077

(actually, with all the geometrical factors, close to 10™)

so AB/B < 1 (but must still be taken into account for
accurate NMR work
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Superconductors: London phenomenology

Basic postulate: as in atomic diamagnetism,

2
) —ne
jr) = A(r)
Combine with Maxwell’s equation
] 1 1 1 _,
j=VXH=—VXB=—VX(VXA)=—-——V*A
Ho Ho Ho

(divA = 0)

gives
2

172A—+K A
= m#o

or taking curl.
2

e
m“"B = 1;2B
N\

London penetration depth

n
V2B =

Hence, both in atomic diamagnets and in superconductors,

B~B,exp —z/1; (n(r), hence 4,
comparable in
two cases)

Qualitative difference: in both cases 1; ~10~>cm, but:
in atomic diamagnets, A; > atomic size = effect very small

in superconductors, 1; < size of sample = effect
spectacular: magnetic field totally excluded from bulk
(Meissner effect)
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Problems with London phenomenology

A. Meissner effect is thermodynamically stable
phenomenon, circulating supercurrents are (usually)
metastable. Hence London argument does not explain
stability of supercurrents! (T: beware misleading
statements in literature)

B. No explanation of vanishing Peltier coefficient.

C. Why do not all metals show Meissner effect?

Let’s turn question C around: when does Meissner effect
not occur?

1. Classical systems:
no restriction on vg = (pg — edp)/m, and by Maxwellian
. . 1
statistical mechanics P(vg) exp(—zmvg/kT), hence from

symmetry vg = 0 = no circulating current = no
diamagnetism (Bohr-van Leeuwen theorem)
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2. Quantum Mechanics, but noninteracting particles obeying
classical statistics: now p (or angular momentum L ) is

guantized
L=*%n, {=..-2,—-1,012..

and energy « (£ — CI)/Csz)2 h?2/2mR? @)X =h/e
S0

P(#) x exp— {(£— d/®P)" - n?/2mR%*ksT} (@ < F)

Crucial point: under normal circumstances kzT > h?/2mR?,
so can effectively replace discrete values of £ by continuum
= back to classical mechanics.*

3. So, will only get Meissner effect if for some reason all
or most particles forced to be in same state. Then the
probability of angular momentum £ for this state is

P(#) xexp —N,(£ — ®/D,)? h?/2mR?*kyT
t

Number of particles in same state

and provided kgT, though > h?/2mR?,is < Nh?/2mR?,
can get results similar to atomic diamagnetism.

Does this ever happen? Yes, e.g. for noninteracting gas of
bosons!

*Doesn’t work for atomic diamagnetism because A% /2mR? is ~eV,
hence > kpT. electron voIts/
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Summary of lecture 2:

(1) In presence of electromagnetic vector potential A(r),
Hamiltonian for single particle of charge e is

_ [—ihV ’
H = ( — eA(T) > + V(r)

2m

(2) For single particle on ring, in flux ® < %h/e, this leads in
ground state to jg = —(e?/m)Ag

(3) For a closed-shell atom, similar argument leads to

jir) = _n(:iez A(r) (diamagnetism)  (*)

(4) London phenomenology: assume (*) also describes
superconductor

= Meissner effect

(5) Difficulty: doesn’t work for classical systems (Bohr —van
Leeuwen theorem) nor (for kT = A% /mR?) for quantum
systems obeying Maxwell-Boltzmann statistics

(6) Difficulty can be overcome if for some reason
all particles forced to behave in same way.
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Appendix Derivation of the classical equations of motion from the
Hamiltonian written in terms of the vector potential.

We consider the classical Hamiltonian of a particle of charge e in
a specified magnetic vector potential A(rt):

H(r,p:t) == (p — eA(rt))" + e (rt) + Voop—em (rt) (1)

where A(rt) satisfies the conditions (consistent with Faraday’s law)
JA(rt)

B(rt) =VxA(rt), E@t) = =Vd(rt) — P» (2a,b)
We wish to show that the Hamiltonian equations
lead to the classical equation of motion
m= = e(E +VXB) + Fon_em (4)
where F,yp—om(t) = —=VV, yn_em (Tt). The non-electromagnetic

terms, if any, can be trivially added to the following argument, so for
brevity | set F,pn—em = Vnon—em = 0.

: e . d 0E . : : :
The first Hamiltonian equation, d—: = simply yields the identity

v(rt) = d:l(tt) = %(p — eA(rt)) (5)

The second Hamiltonian equation needs a little more care: using (4),
we derive from it the equation

__ dv _  OH _ dA(rt)
m dt or dt (6)
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Here it is important to note that the partial derivative dH /0r is
taken at constant p and t, while the total derivative dA/dt is the
sum of the partial derivative dA(rt)/0t at constant r and a
“drift” term which written out explicitly in terms of the Cartesian
components x; of r and 4; of A is

dA;
dt

=\ 4 04

drift ; dt axj

(7)

Similarly, written in terms of Cartesian components with
summation over repeated indices assumed) we have

OH _ 9% 9
ox;  Cox Jax (8)

Thus, (6) becomes (since v is not a function of r)

Ovi _ 0P n OA(rt) 4 6AJ aAl
Mt T\ "%, T ot Tox; TJox;) ()

But the first two terms on the RHS of equation (9) are by
equation (2b) just the total electric field E; , while a simple
vector identity yields for the second pair

04; 04\
v (ax’i — axj) = [vx(V x A)]; (10)

Hence we recover from equation (9) the desired classical
ﬁquation of motion equation (4), Q E D).



