LECTURES ON SUPERCONDUCTIVITY

Anthony J. Leggett

Department of Physics
University of Illinois at Urbana-Champaign, USA

Hong Kong University
Spring 2024

LECTURE 3 4/15/2024

BOSE-EINSTEIN CONDENSATION: THE PROBLEM
OF SUPERCURRENT METASTABILITY

WHY BEC?

1. Qualitative argument:

Bose-Einstein condensation

ultra-toy example: how many ways of distributing 2 objects between 2 boxes?

A. Objects distinguishable (classical): (●, ●)

B. Objects indistinguishable (bosons): (•, •)

So: indistinguishability doesn't favor same state; it disfavors different states! (but effect on <u>relative</u> count is the same)

Generalization: Distribute N objects between 2 boxes: what is probability P(M) of finding M in one box? (add possible energy bias, e.g. e^{-E/k_BT})

Note that statistics alone does not guarantee BEC: some kind of energy bias (e.g. due to temperature) is necessary.

II. Quantitative argt. (Einstein, 1925): chemical potential, ≤ 0 $n_i(T) = [\exp{(\epsilon_i - \mu(T)/k_BT - 1)}]^{-1}$ $\mu(T)$ fixed by: $\sum_i n_i (T: \mu(T)) = N$ \longleftarrow total no. of particles $T \to \infty \Rightarrow \mu \to -\infty$: $T \downarrow \Rightarrow \mu \uparrow$. But what if $\sum_i [\exp(\epsilon_i/k_BT) - 1]^{-1} < N$?

Einstein: Macroscopic no. of particles occupy lowest (ε =0) state!

Condition for this to happen: roughly, $T \lesssim h^2/2mk_Ba^2 \equiv T_0$ distance between particles

Hence for any given total number and volume, there exists a temperature T_0 such that $N_{max}(T_0) = N$. Below this temperature in thermal equilibrium, lowest-energy single-particle state (usually

Now consider a gas of charged (but noninteracting) bosons on a ring in flux Φ : single-particle energies are given by

$$E_{\ell} = \text{const.} \left(\ell - \Phi/\Phi_0^{sp}\right)^2,$$

$$j_{\ell} = \text{const.} \left(\ell - \Phi/\Phi_0^{sp}\right)$$

$$\ell = 0, \pm 1, \pm 2 \dots$$

So when BEC takes place in thermal equilibrium, it does so in the state which minimizes $E(\ell)$, *i.e.* that with ℓ the closest integer to Φ/Φ_0^{sp} ; in particular, for $\Phi<\frac{1}{2}\Phi_0^{sp}$, condensation is into $\ell=0$ state, and contributes an amount $\propto N$ to the circulating current.

Thus, prima facie, if one could invoke BEC one could explain Meissner effect (and vanishing of Peltier coefficient, since a single state carries no entropy). But...

Two problems with BEC as an explanation of superconductivity:

- 1. Does not (by itself) explain metastability of supercurrents.
- 2. Electrons are not bosons but fermions!

1. The problem of supercurrent metastability

A. Formulation of problem:

Imagine we start with the system <u>in</u> equilibrium at T=0 with some trapped flux $\Phi>\frac{1}{2}\Phi_o^{sp}$. According to the analysis of lecture 2, the single-particle energy levels and currents are given by

$$\epsilon(\ell;\Phi) = \frac{\hbar^2}{2mR^2} \left(\ell - \Phi/\Phi_o^{sp} \right)^2$$

$$j(\ell;\Phi) = \frac{e\hbar}{mR} \left(\ell - \Phi/\Phi_o^{sp} \right)$$

$$(\ell = 0, \pm 1, \pm 2 \dots)$$

so BEC takes place in the state which has ℓ closest to Φ/Φ_o^{sp} ; by construction this $\ell \neq 0$. Now we adiabatically turn off the flux: in this process we assume ℓ does not change, thus the final value of ℓ is still $\neq 0$. But since Φ is now zero, we now have

$$\epsilon'(\ell) = \frac{\hbar^2}{2mR^2}\ell^2$$
 $\left(\text{and } j'(\ell) = \frac{e\hbar}{mR} \ell\right)$

and it is clear that the GS has $\ell=0$, so that our resultant state $(\ell\neq 0)$ cannot be stable.

B. Can the system relax to $\ell=0$? Prima facie, situation is exactly similar to relaxation of excited state of single electron in atom.* ($\tau \sim 10^{-9}$ secs!) In that case, looking at behavior of wave function in xy-plane, for $\ell=1$ (p-1state).

$$\psi_{in}(\theta) \equiv \psi_p(\theta) \sim \exp i\theta$$

$$\psi_f(\theta) \equiv \psi_s(\theta) \sim \text{const.}$$
 "topologically" distinct

Let's form a function which interpolates between these forms:

$$\psi (\theta;t) = a(t)\psi_p(\theta) + b(t)\psi_s(\theta)$$

$$E(t) = |a(t)|^2 E_{\rho} + |b(t)|^2 E_{s}$$

$$\psi (\theta; t)$$

$$= a(t)\psi_p(\theta) + b(t)\psi_s(\theta)$$
Because of linearity of Schrödinger equation
$$a(+\infty) = 0, b(+\infty) = 1$$

– downhill all the way! Note always \exists a value of θ and t for which we get a node. For the free Bose gas, can do exactly the same for the singleparticle state $\psi(\theta;t)$ in which BEC is realized

 \Rightarrow no metastability.

Yet in experiment, $\tau \gtrsim 10^{15}$ secs!!

Stability of supercurrents:

C. <u>Topological argument</u>

Let's consider a more general annular geometry, so that angular momentum is not necessarily conserved.

Nevertheless, for any single-particle wave function $\psi(\theta)$ (with $\psi(\theta+2\pi)=\psi(\theta)$) we can define

(for any point at which $|\psi(\theta)| \neq 0$)

$$\varphi(\theta) \equiv \arg \psi(\theta)$$

and thus the winding number

$$\mathcal{N} \equiv \frac{1}{2\pi} \int_0^{2\pi} \frac{\partial \varphi(\theta)}{\partial \theta} d\theta \equiv \frac{\varphi(2\pi) - \varphi(0)}{2\pi} = 0, \pm 1, \pm 2 \dots$$
 (because
$$\varphi(2\pi) - \varphi(o)$$
 mod. 2π)

(Analogy: string wound around hula-hoop)

Crucial point: \mathcal{N} is topologically conserved, i.e. the only way to change it is to "cut the string" (i.e. let $|\psi(\theta)| \to 0$ for some value of θ). This is exactly what the electron in the atom did... Why can the condensate not do the same?

In Schrödinger mechanics energy is bilinear in ψ , ψ^* . What if we add a quartic term, so that

 $E\{\psi\} = E_{schr} + \int_{o}^{2\pi} \kappa |\psi(\theta)|^4 d\theta$ with $\kappa > 0$? Then for $p \to s$ transitions repeat interpolation

$$\psi(\theta;t) = a(t)\psi_p(\theta) + b(t)\psi_s(\theta), \quad |a(t)|^2 + |b(t)|^2 = 1.$$

Now we have:

$$E(b) = E_{Schr}(t) + \int_{0}^{2\pi} d\theta \kappa |\psi(\theta;t)|^{4}$$
$$= E_{Schr}(t) + \kappa \int_{0}^{2\pi} |a(t)e^{i\theta} + b(t)|^{4} d\theta / 2\pi$$

The term in κ is

$$\kappa \int_{0}^{2\pi} d\theta / 2\pi \{ |a|^{2} + |b|^{2} + 2Re(ab^{*}e^{i\theta}) \}^{2}$$

$$\equiv \kappa \int_{0}^{2\pi} \frac{d\theta}{2\pi} (1 + 2|a| \cdot |b|cos(\theta - \theta_{0}))^{2} \qquad \theta_{0} \equiv -\arg ab^{*}$$

$$= \kappa (1 + 2|a|^{2} \cdot |b|^{2})$$

Hence

$$E(t) = \kappa + E_{Schr}(t) + 2\kappa |a(t)|^2 \cdot |b(t)|^2$$

$$\equiv const. - (|b(t)|^2 - |a(t)|^2) (E_p - E_s) + 2\kappa |a(t)|^2 \cdot |b(t)|^2$$

which for $\kappa > (E_p - E_s)$ is nonmonotonic \Rightarrow metastability!

2. The problem of statistics: the "BEC-BCS crossover"

Recap: 2 fermions in 3D free space, interacting via short-range attractive potential V(r) of controllable strength with range $\sim r_o$. If fermions, can form spin singlet $\left(\frac{1}{\sqrt{2}}(\uparrow_1\downarrow_2-\downarrow_1\uparrow_2)\right)$, then spatial wave function symmetric \rightarrow s-state possible.

1. For sufficiently strong attraction, particles form bound state ("molecule") with radius $\sim r_o$, binding energy $\gtrsim \hbar^2/mr_o^2$. (2 fermions \Rightarrow 1 boson)

2. As attraction weakened, radius of bound state becomes $\gg r_o$ and eventually $\to \infty$; binding energy \to 0. ("unitary limit")

3. Beyond this point no bound state is formed.

Expectations in system of N such fermions (assume $nr_o^3 \ll 1$ i.e. "dilute") e.g. ultracold Fermi alkali gas

1. In region where attractive potential is strong, since $r_o \ll$ interparticle spacing, can treat fermion pairs as bosons and (at T=0) expect simple BEC of molecules. – no effect of Fermi statistics.

 As bound state radius → ∞, "molecules" start to overlap strongly, so expect nontrivial effects of (a) inter-molecular interactions and (b) underlying Fermi statistics. But plausible that (some kind of) BEC possible.

3. The \$64K question: What happens in the unitary limit (the point where a single molecule becomes unbound)?

Apparent answer (from theory and experiment in ultracold Fermi gases)

nothing!

i.e. in many-particle system, onset of 2-particle bound state is just not seen.

in fact, now believed that "BEC of pairs" persists right up to "BCS limit" (a_s negative and small), i.e. ultraweak attraction)

Why?

Partial clue: statements for 2-particle system are valid only in 3D. In 2D or 1D a bound state is formed for arbitrarily weak attraction (but in 2D case, binding energy exponentially small in interaction strength). (cf. problem 1.4)

So: can we regard superconductivity as a sort of BEC of pairs of electrons? (Blatt, Schafroth ...)

Summary of lecture 3

Bose-Einstein condensation (BEC) can explain Meissner effect and vanishing Peltier coefficient, but

- (a) cannot by itself explain metastability of supercurrents.
- (b) Electrons are fermions not bosons. ("statistics problem")

Metastability of supercurrents can be explained if there is a term in the energy proportional to $|\psi(r)|^4$ with a positive coefficient. "Statistics problem" might be explained if tightly-bound difermionic molecules evolve smoothly into much more weakly bound collective state.

