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Ginzburg — Landau (GL) theory of superconductivity

Formulated 1950 (pre — BCS): even in 2023 mostly
adequate for “engineering” applications of
superconductivity (SC).

historically, takes its origins in general Landau-Lifshitz
theory (1936) of 2" order phase transitions, hence
quantitative validity confined to T close to T,.. Here,
| will start by arguing “with hindsight” for its
qualitative validity at T = 0, and only later
generalizeto T # 0 and in particularT —» T, .

Recall: could explain 3 major characteristics of SC state
(persistent currents, Meissner effect, vanishing
Peltier coefficient) by scenario in which fermionic
pairs form effective bosons, and these undergo BEC.
Suppose that N fermions form N /2 bosons, which
are then condensed into the same 2 — particle state,
Neglect for now relative wave function and df.

COM wave function of condensed pairs = y(R)

1

COM coordinate
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What is energy E, (at T = 0) of pairs as function(al) of y (R)?
At first sight, for a single pair,

2 2

2le
Eole(R) = By [ x@par+ o |7 A >)((R)

binding energy of pair / 2 electrons involved!
2m = a/aR

so, convenient to define

e

N
Y(r) = \/;X(R) and to normalize so that [|¥(R)|*dR = N /2.

“order parameter” (OP)

Alsoset a;_g=E,, M =2m

then energy of N/2 pairs is

2 2

E,{¥(R)} = const. + j dR [—aT=0|‘P(R)|2 -+ Zh_m

(V — 2%A(R)) Y(R)

However, by itself this will not generate stability of supercurrents
(lecture 3). To do so, must add (e.g.) term in |¥|*... Adding also EM
field term:

EO{LIJ(R()} = .
1 ,  h? 2ie
f iR —ar=o| Y(R)|* + E.BT=0|LP(R)| tm (V - TA(R)> Y(R) >
1 -1 2
k +ou J(VxAR) J

/

I “Standard” form of GL (free)
energy (at T=0)
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Notes:

1. Normalization of W(R) is conventional and arbitrary. (see Appendix)
leaves Ey unchanged.

2. IfA(R) = 0and W(R) = constant =¥ 'T‘io, then value is

¥ 'T‘Cio — (aT=O/,BT=O)1/2

and energy is E7l, = —a%_y/2P1=0
3. Minimization with respect to A(R)(6E,/6A(R) = 0) yields Maxwell’s
equation VxH = ](R)
provided that we identify
i(R) = %(W*(R)(—ihv —2eA)¥(R) +c.c.)

4. Minimization with respect to W(R)(6E,/6¥(R) = 0) yields
h? ie
—ar=g¥(R) + fr=o| P (R)PP(R) — - — (V -2 gA(R)) Y(R) = 0

Note that for A(R) = 0 this defines a characteristic length

hZ 1/2 hZ 1/2
Er=0 = (Wm) = <2mEb> ~ pair radius

A second characteristic length follows if we put W(R) = constant = W,

and compare terms in A% and (V x A)?: they are equal when
|V x A| = 271, with

Ar=g = (zm/ezﬂo|lpo|2)1/2
or since with our normalization ¥, = \/N/2V,
Ao = (m/ppe?n)/? (= London penetration depth at T = 0)

\electron density
I (note that factors of 2 multiplying e and m cancel!)
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Generalizationto T # O:
Free energy

All we need dois to let E, = F(T) and let the
coefficients ay, o be T — dependent:

F(W(R): T) = Fo(T) + f ARF{W(R)T)

free energy density

F{Y(R)T

2 2

h
= oM@+ fDIPR +5

2m h

<|7 - ZEA(R)) Y(R)

+ug (7 x AR))’

f

standard form of GL free energy density

Note that there is now a contribution to a(T) (and
possibly also S(T)) from the entropy term —TS{¥(R)}.
(condensate itself carries no entropy, but electrons
“liberated” from it do!)
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ThelimitT = T,
Since W(R) describes S state, F1
should — 0 at some T, then a(T)
should change sign there. Most
natural choice in limit T — T,
(corresponding to E, ~ constant,
S{¥(R)}~ constant — constant |¥|?):

T >T,
(a(T) < 0)

a(T) = aog(Te —T) Y-
B(T) = By =ind.of T . B

ForT # 0,alltheT =0 T<T.
results go through with (a > 0) |

ar=o = a(T), Br=o = B(T). 0
In particularin limit T — T, VTN
from below: “Mexican-hat” potential

Weq (T) = (a(T)/B(T)) "~ = (ao/Bo)/*(T. — T)'/?
Foq(T) — Fo(T) = — a*(T) /2B(T) = —(ag/2Bo) (T, — T)?
From F,,(T) — Fo(T) o (T, — T)?, entropy S has no discontinuity at T,

T

but sp. ht. C, = TdS/dT has

discontinuity T.a3 /B = C, 5 /
second order phase transition J N

at T,. .
What about characteristic 7!C

lengths £A? T -
§(T) o [a(D]™V? « (T, = T)7V/?
A(T) o [Weq - (T)] " & (T, — T)~1/2

I soratiok = A/¢ isindependent of T in limit T — T..

1/2
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Some simple applications of the GL theory

A. Zero magnetic field (4 = 0) g

1. Recovery of OP near wall (etc.)

Suppose boundary condition at z = r
0 is that ¥ must — 0 (e.g. wall
«—>

ferromagnetic). £(T)
Then must solve GL eq

h? GZ‘P(Z)_O
2m  0z2

a(TY¥(2) + Bo|¥(2)|?¥(2) -

subject to boundary conditions
Yz=0)=0
W(z — ) = Wy, = (a (T)/Bo)"/?

Solution:
Y(z) = WY, tanh (z/2&(T))

§(T) = (flz/Zma(T))‘l/Z x (T, — T)—l/z

Note: W does not have to vanish at boundary with vacuum or
insulator! [except on scale ~kz! where N state wave functions
do too] Thus, no objection to SC occurring in grains of
dimension « &(T). However, contact with N metal tends to

suppress SC.
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2. Current — carrying state in thin wire

If d < A(T), can neglect A to first

approximation S,
d}

By symmetry,

. 2eh
¥ = |¥| exp i@, |[¥| = constant, j = % RYR %"

, “Superfluid
F=—a(D|¥]? +L¥|* + L |@|2(7e)? velocity”

h
Vg :%V(p

and we need to minimize this with respect to |¥| for fixed V.
Result:

_ g2\
0

= |¥| - 0 for Vo = E71(T) (condensation energy changes sign).
However, j is nonmonotonic function of V¢, with maximum at
point when Vg = %E‘l(T). (at which point |[P| = /?/3 W)
Thus, critical current j. given by

. 2eh 2a(T) 1
Je =

) - -1 _ 3/2
3 g 5D xaEn & (A-T/T)



Sustech 4.8

B. Behavior in magnetic field

Because of the Meissner effect, any superconductor, whether
type-I or type-II will completely expel a weak magnetic field. If
we consider just the competition between the resulting state
and the Nstate, we have in a suitable geometry (long cylinder ||

to field) (per unit volume) H,,;
1
AEmagn = +§M0Hezxtv
AEcong = —a*(T) /2B,
v’

and so “thermodynamic”
critical field H, is given by
the value of H,,; at

which AE,49n = AEcond,

i.e. by

N S
Ho(T) = (a?(T)/uoBo)Y/? o< (1 = T/T,)

For H,,; > H_.(T) the sample simply reverts to the N phase.
However, in general this works only for “type-1”
superconductors in form of long cylinder parallel to field.

More generally:
(a) in type-l superconductors, “intermediate” state

forms with interleaved macroscopic regions of
N and S.

(b) in type-Il superconductors, magnetic field
“punches through” sample in the form of

I vortex lines. “mixed state”

Hext
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Isolated vortex line (Abrikosov)

Consider A(T) » &(T)
(“extreme type-Il”)

Magnetic field turns region
~&2(T) normal, and “punches
through” there. Field is screened

out of bulk by Meissner effect on
scale A(T) >» &(T)

At distances > A(T), no current flows: however since
. 2e
J < V(p — 714

V@ and A may be individually non zero, with Vg = 2—;A.
But ¢ must be single-valued mod. 27, hence

jLVgo-di’zZnn:fA-deCD:nCDO

/

trapped flux h/2e

“superconducting”
flux quantum

n = 0 is trivial (no vortex!) and |n| > 2 is unstable, so restrict
considerationton = (+)1.

Since field extends over ~ A(T) into bulk metal,

field at core (= Hy)~®,/A%(T).




Energetics of single
vortex line (per unit
length)

circ.
| currents I

¢(T) A(T)

(1) “intrinsic” energies: R =

(a) field energy "’%MOHSAZ'VQDS/(MOAZ)
(b) (minus) condensation energy ~ — %MOHEfZ

(c) flow energy: ng%%, forR < A(T), so

2m (2m)?

A
A \* [ RdR K2
(C)~I‘Poo|2<—>j ~| Wy |? tn(A/§)
3

but A(T) = (o We|?e?/m)~12, so

()~ (©8/1022(T) ) £n(1/8)
N

dominant over
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(a) and (b) for A(T) > &(T)

Thus “intrinsic” energy per unit length of vortex lines for A > € is

Bo(T)~ (®5/ (4o 2(1)) - £n(2/) ) .
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(2) On the other hand, the “extrinsic” energy saving due
to admission of the external field is
~UoHext Ho~Hpye (@o/1%). Hence the condition for it
to be energetically advantageous to admit a single
vortex line is roughly

Hexe~(®o/A2(T)) - tnx (k= A(T)/E(T) # f(T))

This defines the lower critical field H.4.

What is the maximum field the superconductor can
tolerate before switching to the N phase?

Roughly, defined by the point at which the vortex cores
(area ~&2(T)) start to overlap. Since for near-complete
penetration we must have n®,~H,,, this gives the

condition \
number of vortices/unit area

Hext~(¢0/€2 (T))

This defines the upper critical field H.,

Note that for A(T) < &(T), we have H.; = H_, and
would expect type-| behavior.
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Results of more quantitative treatment:
(a) condition for type-Il behavior is k = (A(T)/&(T)) > 271/2
(b) in extreme type-Il limit k > 1,
Hey (T) = (Do /4mA%(T) )#nk
(c) in same limit,
Heo (T) = @ /2m&2(T).
Note that quite generally we have up to logarithmic factors

Hcl (T) ’ Hc2 (T)"’Hg (T)
I thermodynamic
critical field

hence if H.(T) held fixed, H,; varies inversely to H,

Application: dirty superconductors

Alloying does not change E_y,,4(T), hence H2(T), much.
However, it drastically increases A(T) ( and decreases
&(T)). Hence k is increased, and many elements which on
type-l when pure become type-Il when alloyed. As alloying
increases, H., increases while H,; decreases.
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Summary of lecture 4

Ginzburg-Landau theory is special case of Landau-
Lifshitz theory of 2"Y order phase transitions:
quantitatively valid only near 7., but qualitatively over
a much wider regime. Introduces order parameter
(“macroscopic wave function”)¥(R) which couples to
vector potential A(R)with charge 2e:

F{¥(r)} = const. —a|¥(R)|? + %,BI‘P(R)I4 -+

2

1
const. + = puy (Vv x A(R))Z

2

<|7 - Z%A(R)) Y(R)

2 characteristic lengths:
healing length &(T)
penetration depth A(T)
both oc (T, — T)"Y? for T - T.,.

Magnetic behavior depends on ratio k = A(T)/¢(T) |-,

In a long cylindrical sample:

For k < 271/2, (“type-17) field completely expelled up to a
thermodynamic critical field H.(T), at which point turns fully
normal.

For k > 2712 (“type-1I") field starts to penetrate at H, in
form of vortices, continues to do so up to H., where turns
completely normal.




