LECTURES ON SUPERCONDUCTIVITY 2023

Anthony J. Leggett

Department of Physics
University of Illinois at Urbana-Champaign, USA

LECTURE 5 4/22/2024

NORMAL STATE: ELECTRON-ELECTRON
INTERACTIONS AND COOPER PAIR
INSTABILITY

Basic properties of the normal state

Simplest QM model of metal: Sommerfeld model.

N electrons with spin $\frac{1}{2}$ (so 2 spin states \uparrow , \downarrow) moving freely in volume $V \equiv L^3$. Apply periodic boundary conditions, then energy eigenstates are

$$\psi_k(\mathbf{r}) = \frac{1}{\sqrt{V}} \exp(i\mathbf{k} \cdot \mathbf{r})$$
 with $k_x = 2\pi n_x/L$ (etc.)

and energy

$$\epsilon_k = \hbar^2 k^2 / 2m$$

so density of states (of both spins) is

$$dn = \frac{2V}{(2\pi)^3} d^3 \mathbf{k} = \frac{2V}{(2\pi)^3} 4\pi k^2 dk = V \frac{(2m)^{3/2}}{2\pi^2 \hbar^3} \epsilon^{1/2} d\epsilon$$
 $(\equiv Vg(\epsilon)d\epsilon)$

Electrons are fermions, so obey Pauli principle (crucial!) \Rightarrow at T=0, electrons occupy lowest-energy N states, that is a sphere in k-space with radius k_F such that

$$\frac{2}{(2\pi)^3} \frac{4\pi}{3} k_F^3 = N/V \equiv n$$

i.e.
$$k_F = (3\pi^2 n)^{1/3}$$
 Fermi wave vector, typically $\sim 1 \mathring{A}^{-1}$

Corresponding energy is

$$\epsilon_F = \frac{\hbar^2 k_F^2}{2m}$$
 Fermi energy, typically $\sim 1 - 10 \ eV$ $(\sim 10^4 - 10^5 K)$

For T nonzero, electrons have Fermi distribution

$$n_k = (\exp \beta (\varepsilon_k - \mu) + 1)^{-1}$$

$$1/k_B T \qquad \text{chemical potential.}$$
 $\approx \varepsilon_F$

Crucial point: at least for "classical" metals, at all T below melting, $kT \ll \varepsilon_F$ \Longrightarrow properties of metals overwhelmingly

determined by states near Fermi energy

 $n_k \uparrow$ T = 0 $T \neq 0$ $\varepsilon_k \rightarrow \varepsilon_F$

Particularly important quantity: DOS (of both spins) per unit energy per unit volume for states near Fermi surface,

$$(dn/d\epsilon) \equiv g(\varepsilon_F) = \frac{(2m)^{3/2}}{2\pi^2\hbar^3} \epsilon_F^{1/2} = 3n/2\varepsilon_F$$

In terms of this,

electronic specific heat
$$C_V=rac{\pi^2}{3}k_B^2Trac{dn}{d\epsilon}$$
 (so $\sim k_BT/\varepsilon_F$ times classical value $^3/_2\,nk_B$)

Pauli spin susceptibility
$$\chi_p = \mu_B^2 \frac{dn}{d\epsilon}$$
 ($\sim k_B T/\varepsilon_F$ times classical value $(\times \mu_0 \text{ in S1})$ $n\mu_B^2/k_B T$)

To discuss transport properties in Sommerfeld model, introduce phenomenological scattering time

$$\tau \equiv \ell/v_F$$

$$\equiv \hbar k_F/m \equiv \text{``Fermi velocity''}$$

$$(typically \sim 3x10^6 m/sec \sim 0.01c)$$

$$\text{mean}$$

$$\text{free}$$

$$\text{path}$$

$$\text{dc conductivity}$$

$$\text{FS properties}$$

for a good metal (e.g. Cu) at RT, $\rho \equiv \sigma^{-1} \sim$ a few hundred μ ohm*cm

Some important corrections to Sommerfeld model:

1. Crystal periodicity \Longrightarrow Bloch Model:

Electrons still non-interacting, but move in periodic potential of *i*ons; main consequences:

- (a) band structure ⇒ not all crystalline solids metallic (but at least those with odd number of electrons/unit cell should be)
- (b) within single band, $\varepsilon(\mathbf{k}) \neq \hbar^2 k^2 / 2m$

 \Rightarrow locus of ε_F in general not spherical. However, can still define DOS at Fermi energy, $dn/d\varepsilon$, and formula for C_V and χ_p in terms of it unchanged

2. Effect of (mostly short-range repulsive) interactions \Rightarrow Landau-Silin model: low lying excitations now "quasiparticles" (\approx electron plus screening charge) with effective mass m^* , interact via Weiss-type molecular fields.

Neither Bloch nor Landau-Silin modifications change basic structure of BCS theory, so shall assume simple Sommerfeld model plus weak attraction (see below).

How to generate effective attraction between electrons in a metal?

At first sight, have only interaction with static lattice (accounted for in Bloch picture) and Coulomb interaction,

$$\sum_{ij} e^2/4\pi\epsilon_0 |\mathbf{r}_i - \mathbf{r}_j|,$$

which is purely repulsive. However:

(a) Effective Coulomb interaction is screened. To get qualitative feeling, consider response of electrons to charged impurity (ions form constant +ve background.)

Quantitatively: effective potential at r is

Taking Fourier transforms and solving gives

$$V_{eff}(q)=rac{Z\kappa_0}{1+q^2/q_{TF}^2}$$
 Thomas-Fermi wave vector,
$$\equiv (e^2/\epsilon_0\kappa_0)^{1/2} \ \sim 1-2 {
m \AA}^{-1}$$
 i.e.
$$V_{eff}(r) pprox rac{Ze^2}{r} \exp{-q_{FT}r}$$

Intuitively, same should hold for effective interaction of two electrons...

however, interaction is still repulsive...

How to generate attraction....? (cont.)

Effect of ionic motion (phonons): $+\nu e$ ions attracted to path of $e^{-}(1)$; but sluggish + slow to relax \rightarrow after passage of $e^{-}(1) + ve$ charge remains, can attract $e^{-}(2)$. Thus,

 $e^{-}(2)$ attracted to past position of $e^{-}(1)!$ (note: works even if solid not crystalline!)

Illustrative analogy:

2 particles 1, 2 coupled with strength g to SHO of mass m and natural frequency ω_0 . Results in time-dependent effective interaction $V_{eff}^{12}(t)$ whose Fourier transform is

simple

$$V_{eff}^{12}(\omega) = \frac{g^2}{m} \frac{1}{\omega^2 - \omega_0^2}$$
 oscillator attraction for $\omega < \omega_0$

Putting considerations 1 and 2 together (and with lots of algebra!) we find that a plausible form of effective interaction of 2 electrons in metal is

Frequency of phonon with wave vector q

$$V_{eff}(q,\omega) = \frac{\kappa_0}{1 + q^2/q_{TF}^2} \left\{ 1 + \frac{\omega_{ph}^2(q)}{\omega^2 - \omega_{ph}^2(q)} \right\}$$

Bardeen-Pines interaction Attractive for $\omega < \omega_{ph}(q)$

1: If this were exactly right, all metals should be superconductors!

⇒ need more precise calculation taking into account details of band structure, etc.*

But, at end of day, plausible that for at least some metals the "static" $(\omega \to 0)$ interaction can be attractive....

*Some predictions spectacular, e.g. of superconductivity in metallic hydrides with $T_c \sim ^2/_3$ of RT.

The Cooper problem

2 electrons in singlet spin state, interacting via contact potential $V_0 \delta(r)$ (V_0 either sign), but excluded from the Fermi sea (and also from high-energy states with $\varepsilon > \varepsilon_F + \varepsilon_c$). Suppose COM is at rest, then orbital wave function is

$$\psi_{orb}(\boldsymbol{r}_1,\boldsymbol{r}_2) = \psi_{orb}(\boldsymbol{r}_1 - \boldsymbol{r}_2)$$

$$=\sum_{k \ in \ shell} c_k \exp i \pmb{k} \cdot (\pmb{r}_1 - \pmb{r}_2) \ \ \text{with} \ \ c_k = c_{-k} \qquad \sum_k |c_k|^2 = 1$$

$$\uparrow \qquad \qquad \uparrow \qquad \qquad \uparrow$$

$$\equiv \pmb{r}, \ \text{relative} \qquad \qquad \text{Pauli} \qquad \text{normalization}$$
 coordinate

It is convenient to measure the kinetic energy $\langle \hat{T} \rangle$ from the value it would have if both electrons were exactly on the Fermi surface $(k=k_F)$. Thus,

$$\langle \hat{T} \rangle = \sum_{k \text{ in shell}} 2\varepsilon_k |c_k|^2$$

$$\varepsilon_k \equiv \frac{\hbar^2 k^2}{2m} - \varepsilon_F$$
 (so $0 < \varepsilon_k < \varepsilon_c$)

The potential energy is

$$\langle \hat{V} \rangle = \int V(\mathbf{r}) |\psi(\mathbf{r})|^2 d\mathbf{r} = V_0 |\psi(0)|^2 = V_0 \sum_{\leftarrow kk'} c_k^* c_{k'}$$
in shell

Hence, minimizing $\langle T \rangle + \langle V \rangle$ subject to the normalization condition and measuring the energy E from $2\varepsilon_F$, we find the $TISE \leftarrow$ time-independent Schrödinger equation

$$(2\varepsilon_k - E)c_k = -V_0 \sum_{k'} c_{k'}$$

or rearranging and replacing

$$c_k \to c(\varepsilon), \sum_{k'} \to \frac{1}{2} \int g(\varepsilon') c(\varepsilon') d\varepsilon',$$
 (note no spin sum!)
$$c(\varepsilon) = \frac{-V_o}{2\varepsilon - E} \int_0^{\varepsilon_c} \frac{d\varepsilon'}{2} (g(\varepsilon')) c(\varepsilon') \tag{*}$$

Note that so far, the case of 2 electrons interacting in free space is a special case, with ε_F set = 0. In that case (in 3D) the DOS $g(\varepsilon') \propto \varepsilon'^{1/2}$, and for small enough V_o equation (*) has no bound-state (ε < 0) solution, giving the known result:

in (3D) free space, an arbitrarily weak attractive potential does not give a bound state.

(cf. coordinate-space discussion in lecture 3)

Now the crunch: for the Cooper problem, $g(\varepsilon)$ needs to be given its value at the Fermi energy, *i.e.* the constant value $(dn/d\varepsilon)$ (note in free space this would be the case in 2D). Thus, taking this out of the integral.

$$c(\epsilon) = \frac{-\frac{1}{2} \left(\frac{dn}{d\epsilon}\right) V_0}{2\epsilon - E} \int_0^{\epsilon_c} d\epsilon' c(\epsilon')$$

or integrating both sides over ϵ and cancelling the factor

$$\int_{0}^{\epsilon_{c}} c(\epsilon')d\epsilon', \qquad 1 = -\frac{1}{2} \left(\frac{dn}{d\epsilon}\right) V_{0} \int_{0}^{\epsilon_{c}} \frac{d\epsilon}{2\epsilon - E}$$

We seek a solution with E < 0. For V_0 positive (repulsion) no such solution exists. But for V_0 negative (attraction)

$$1 = \frac{1}{2} \left(\frac{dn}{d\epsilon} \right) |V_0| \ell n \left(\frac{2\varepsilon_c}{-E} + 1 \right) \Rightarrow E =$$

$$-2\varepsilon_c \left(\exp\left(\frac{4}{\left| \frac{dn}{d\epsilon} \right|} |V_0| \right) - 1 \right)^{-1}$$

or in the limit $|V_0| \rightarrow 0$,

$$E = -2\varepsilon_c \exp -4/\left[\left(\frac{dn}{d\epsilon}\right)|V_0|\right]$$

Thus, state is "bound" in sense that E < 0. Is it also "bound" in the sense that $\psi(r) \to 0$ for $r \to \infty$? Yes!

$$\psi(r) = (\text{const.}) \frac{1}{r} \frac{\partial}{\partial r} \int_{k_F}^{k(\varepsilon_c)} \frac{\cos kr}{2\varepsilon_k + |E|} dk \sim (\cos/\sin k_F r) \times f(r)$$

where $f(r)\sim 1/r$ at small r , $\sim 1/r^2$ at large r (so ψ normalizable). Crossover occurs at distance $r\sim \xi_c$, where

$$\xi_c \sim \hbar v_F / |E| \sim (\hbar v_F / \varepsilon_c) \exp + 4 / \left(\frac{dn}{d\varepsilon} |V_0|\right)$$

so "effective radius" of pair $\rightarrow \infty$ for $|V_0| \rightarrow 0$.

What do we expect at nonzero T? Crudely speaking, if we replace in $\int c(\epsilon)d\epsilon$ the lower limit 0 by a value $\sim |E|_{T=0}$, solution disappears. But effect of nonzero T is to "blur" sharp cutoff at $\epsilon=0$ by amount $\sim k_BT$. Hence expect solution disappears for $T\sim T_c$ where

$$T_c \sim |E|/k_B \sim (\varepsilon_c/k_B) \exp{-4/\left[\left(\frac{dn}{d\varepsilon}\right)|V_0|\right]}$$

Summary of lecture 5:

A minimal model for superconductivity is the freeelectron (Sommerfeld) model plus a weak attractive electron-electron interaction. The overall interaction can be attractive because

- (a) the "bare" Coulomb repulsion is strongly screened, and
- (b) virtual polarization of the ionic lattice (exchange of virtual phonons) can give rise to an interaction which is attractive at low frequencies.

In the presence of a weak attractive contact interaction $-|V_0|\delta(r)$, a pair of electrons excluded from the Fermi sea form a bound state with energy $E \sim -2\varepsilon_c exp - 4/[(dn/d\epsilon)|V_0|]$ and radius $-\hbar v_F/|E|$. At nonzero T the bound state disappears around $T_c \sim |E|/k_B$.

