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BCS theory (T # 0) HKU 7.2
Recap: at T = 0 the structure of the MBWF is

L11=1_[c1>k (k= (k1,—k))
k
ch — uk|00 >+ Uklll)k

and the specific values of u;, and v, were found by minimizing
( — uN).

For T # 0 we expect intuitively that the description of the
many-body system can still be factored into a product of
descriptions of the occupation of the individual pair states

(kT,—k ) : technically

p = nﬁk <4  density matrix
k

but now (a) all 4 occupation states will be realized with some
probability
(b) quantities like A will be T —dependent

(c) atsome T.~ A(T = 0)/kg the collective bound
state will cease to exist.
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Recall: for given k = (k T,—k ) 4 occupation states

100),[11),01), |10)
GP EP BP, BP,

and ground state has

Yy = u|00) + vy |11) corresponding to oy, | H;, = —€4,Z + AX

1/2
with an “energy” —Ey= |H | = (e,% + |A|2) / . The limitA - 0
corresponds to the normal GS, and then E;, — |€x|. So the energy of
the “ground pair” state relative to the normal ground state is

Ecp = |ex| — Ei.

The EP ( “excited pair”) state is formed by simply reversing the
pseudospin k, so that

Yrep = U|00), — uy|11) (orthogonal to Yy )
This evidently costs an energy 2E,, so
Egp = |ex| + Ej

What about the BP (“broken pair”) states BP; ,? These each
correspond (relative to the N ground state) to kinetic energy (KE)
|€, | and zero PE (no partner to scatter!), hence

Egp,, = |€kl

Thus the relative energies of the various states are
EBPLZ — Egp = Ex, Egp — Egp = 2Ej

and lowest (fermionic) excitation energy is mine, (|€x|* + |A]*)/2
I = A (hence name “energy gap”)
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Conventional language:

State BP; (BP,) has “Bogoliubov quasiparticle” in state
kT (—kl); state EP has quasiparticles in both k Tand k |
(hence Egp = 2Epp, - ? : but EP is really an “excitation of the

condensate” whereas BP, , are not).

Population of states: since all 4 states distinguishable, simple
Maxwell-Boltzmann-Gibbs statistics applies, i.e. B, < exp — BE,,.
Thus (taking E;p as zero of E)

PGP = Z_l, PBPl = PBPZ = Z_lexp — ﬁEk' PEP = Z_lexp — ZﬁEk
(Ex = Ex (D))
Z =1+ 2exp — PE, + exp — 2BE}
A quantity of special interest is

1
Fie(T) = 5 {owe)(T) = (A(T)/2E ) (Pgp — Pep)

= (A(T)/2E;(T))tanhBE;(T)/2
Putting this into the equation

A(T) = =Vo ) Fi(T)
k

we find

A(T) = Vo ) (A(T)/2E; (T))tanhBE (T)/2)
K
or in the more general case (Vg — V1)
A (T) = — Z Vit (Byr (T)/2E 1 (T))tanhBE,ys (T)/2

t

I Finite-temperature BCS gap equation
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As T increases from 0, A(T) decreases from A(0) to zero at a
temperature T, given by the linearized equation

A (T,) = — Z(ka’Ak’ (TC)/2|Ekr ) tanhp, lex'l/2 (B = 1/kpT,)
k/

For the BCS contact potential (V,r = V) this yields

I tanhf e/2

IN(O)V,]7 ! = j ; de = n(1-14p.€,)

0

so comparing this with zero-T gap equation

INOOV, ]! = tn(2e./A(T = 0)) = 1-14B.¢. = 2¢./A(T = 0))
we have
A(T = 0) = 1.76kgT.

reasonably well satisfied for most “classical” superconductors

Examination of the gap equation at arbitrary T < T, shows that it
is a function only of T /T, 1.76kgT,—>

A(T)T \

T - 0

A(T) = 1.76kgT.f(T/T,)
with f(z) = (1 — z*)1/?

(sofor T = T.,A(T) < (1 —T/T.)Y?)

approximate form
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Properties of a BCS superconductor at nonzero T.

A. Condensate:

As we saw, the (F.T. of the) condensate wave function has
theformatT # 0

Fie(T) = (A(T))/2Ex (T))tanhBE (T)/2

so, in the wave function

F(r) = z Fiexpik - r
K

= N(0) j dej, sin kr AT 7 tanh B(er + Az)l/Z/Z
KT (2 4 A2(T))

the low energy cutoff (which determines the long-distance
behavior) gradually changes from ~A(T = 0) to ~kgT. Since
forT < T, these are of same order of magnitude, we have
approximately

F(r:T) = A(T) - N(O)

T exp —1/€'(T)
where £'(T)~&'(0).1i.e.,

Cooper-pair radius is not sharply T-dependent
(in particular, does not diverge for T — T, from below).

The number of Cooper pairs,
N.(T) = j|F(r: T)|*dr
is proportional to A%(T), hence for T - T,

N.(T) < (1 = T/T.)(x O(NA(O)/ER))




B. The Normal Component HKU 7.7

Condensate is very “inert”, e.g. cannot be spin-polarized or
(usually) flow in a way determined by walls. This applies both to GP
and EP states (both have S = 0, COM momentum = 0). Hence such
responses determined entirely by BP states. However, response is
not simply proportional to the probability of occupation of BP states:

Ex: Pauli spin susceptibility

In field 7, AE = —,LLB}[Z S7.Hence, does not affect |00) or
|11), but i 1
real spin not pseudospin!

shifts energies of BP states,

AEpp, = —upH, AEgp, = +upH

Hence:

Pgp, = exp — B(E;, — ugH), Pgp, = exp — B(Ey + ugH))

and
(Mz> = #B(Sz>
= 1 > (2 ) (exp = B — up70) — exp — BBy + up70)).
k

with Z, () = Z,.(0) + 0(F?)




HKU 7.8
For ugH < kgT,A(T) this gives

(M) = 2#3}[2 dE, (exp — ,BEk)/Zk = #éﬂgz sech? BEy /2

k

and so

= (M,)/3¢ = 3 (52) 5 J; sech?(BE/2)de

In the normal state (E — €) this correctly gives x,, = us dn/de, so

N[

XD xn =5 [ sech? @ /22
0

“Yosida functlon 7

X/ Xn J_

Note: Reason argument is 1
relatively simple is that
energy eigenstates (k T)
and (—k 1) carry a spin
+1/2 (—1/2) respectively
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The normal density

The “normal density” is defined as the fraction of the electrons
which can respond to a (transverse) static vector potential, in
following sense:

In presence of vector potential A(r)
p - p—eAr)
So KE becomes

52 2 42
E(ﬁi_eAi(r))z/ZmEz<p—i—iﬁi-A+Li(ﬂ)

2m m 2m

l

and the current density j(1) is

jr) = 22(5(7‘ —r)){(P; — eA(r))/m + H.C.}

We already saw that the explicit term in A(7;) gives rise in

2
the S phase, to j(r) = — N%A(r), i.e. the Meissner effect.

But in the normal phase it is cancelled by the response of
p; to the perturbation p; - A(r;).

, Ne?
(6j/6A) pere = + —
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So:in S phase at 0 < T < T, what is perturbative response of
ptoA?

(almost) exact analogy to calculation of spin susceptibility:
|00) and |11) have total P = 0, so cannot respond
|10) has momentum p = hk, |01) has p = —hk. Hence

AEgp = —ehk-A/m AEgp, = +ehk - A/m

Total induced momentum is

_ ehk - A ehk - A
P:zk:hk(zkl)(exp—ﬁ(Ek— - )—exp—,3<Ek+ m ))

and for hk - A < kgT, A(T) this reduces to

P
=e— =
m
Zezhz—AZ(Zkl)—exp BE, 2ezp—Fﬁ sechz(ﬂEk/Z)-A
dE, 3m 2

I

directional averaging

In N state (E — €) this correctly reduces to Ne?/m, so ratio
(“p,,/p”) of response in S state at temperature T to N —state
value is 0
pulp =t [ (sech pi/2)ae
o 7

Yosida function

4 x and p,,/p are untypically simple, because energy
I eigenstates are also eigenstates of o and p.
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Properties of a BCS superconductor at nonzero T (cont.)
C. Specific heat

The entropy S, and hence the specific heat ¢, has contributions
from both the BP states (“normal component”) and the EP state
(“distortion of condensate”). If we consider a given pair state
(k T,—k 1) and devote the contribution to these quantities by a
subscript (k), then we have after tedious but straightforward
algebra

S((”f)) = kﬁ z PTL fnPn = —kB(Ppr‘nPGS + ZPBr{)nPBP + PEp‘gnEp)

= ZkB{ el +¢n(1+ e‘ﬁEk)}

eBEk 41 (Ex) = Ex(T)

db h?(B E/2
= )sec (B E/2)

s,
CV(k)(T) T_ = _,B Ey (Ek + B dps

where as usual 8 = 1/kgT. The total (electronic) specific heat
C,(T) of the system is given by summing this over k (no sum over
spins).
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The qualitative behavior of C, (T) normalized to its A-state value at

T. is similar to that of the Yosida function (except that it overshoots
1forT — T,, see below). Two important limits:

(1) T - 0:since dA/dT and hence dE /dT is negligible in this

1
ePE +1

d
limit, and sech?BE/2 - — T ( ) , this gives

d 2E, (O
CV(T)T—>O - EZ {eﬁEkécog _|)_ 1} - COTLStﬁS/Z [A(O)]S/zexp o IBA(O)

= specific heat of 2 independent Fermi particles of energy E; (0)

(2) T - T.: in this limit we can set Ej, — |E} | except in the dE} /df
term. Then the first term simply gives the N-state specific heat,
(n?/3 k2T dn/d €). The difference Acs, between the

superconducting and normal states at T, (i.e. the specific heat
“jump”) is given by

1
Ao = 5 ko2 Z E\ (dEy./dB) g—p,sech?(B./Ex 1/2)

—1 d_n —iAZ(T)
- 2\de )| dT

and since A*(T) 71, in  is (3 06)*(1 — T/T,), this gives

1
Acg, = 5(3 - 06kg)?T.(dn/de) = 1-43c, (T - T, +)

reasonably well satisfied for most BCS superconductors other
I than Hg and Pb.
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«—1.43

Cv(T)
Cn (TC+)

State

«—1

Specific heat normalized to N-state value at 7,
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Summary of lecture 7

At T + 0 the BCS description is still a product over the
different pair states k = |k T, —kl), but now all four states

|GP) = 1;|00) + v, |11)
IBP1) = |10)
IBP2) = |01)
|EP) = v]|00) — ug|11)

are populated, and u, and vj, are functions of T. The relative
energies of the 4 states are

Egp(T) — Egp(T) = Ex(T) s
Ee(T) = (e + 18 (D)%)
Egp(T) — Egp(T) = 2E(T)

The self-consistent equation for the gap is

Ay (T) = — 2 Vi (B (T) /2,0 (T) )tanh(BE 1 (T)/2)
k’

and has a nontrivial (A; # 0) solution only for T < T,, where
kpT. = AT = 0)/1.76

Condensate wave function F(r: T) not strongly T-dependent:
no. of Cooper pairs N.(T)~A?(T), near T.~(1 — T/T,)
“Normal component” is essentially BP states: contributes to
“simple” quantities (x, py, ...) an amount Y (T), e.g.

B (P
I XD = V(1) =5 [ sech? BET)/2)de

0




