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Relation of BCS and GL Theories

Recap: GL is phenomenological theory of superconductivity,
whose output is a free energy density F expressed as a function
of a (complex scalar) order parameter W(R): in its original (and
only subsequently rigorously justified) form

1
FIPR): T} = a(MIPRI* + 5 BMIPRI* +

2

1
+ Eual(V X A(R))2

y(T) |V =2 %A(R, t)W(R)

with
(forT - T,) a(T) = ay(T —T,),B(T) = By, = const.y(T) = y,= const.

On the other hand, BCS theory introduces a pair wave
function F(r: T) which has a spatial extent £'~Avz /A(0), and
an energy gap A(T).

What is relation between these two descriptions?

Clue: BCS approach as developed so far assumed pairing
between (k T) and (—k 1), i.e. COM of pairs at rest. But must
be possible to generalize to COM in motion (k + q/2 T paired
with —k + q/2,1) and even to spatially nonuniform behavior.
So consider generalization

F(r) (=F(r,—1r,) = F@ry,r,) = F(R, 1) +— generalized
pair wave

COM _ function
relative




[Technical definition of F(r,1,) (for current or would-be KU 8.3
experts only):

(a) probability amplitude to add an electron of spin T at r;, and one of
spin | at r, to ground state (thermal equilibrium state) of N-particle
system and reach ground state (thermal equilibrium state) of N + 2 —

particle system.

(b) eigenfunction of 2 — particle density matrix g, (rq10,1r,0,:r10,150,)
corresponding to single macroscopic eigenvalue].

Others: just think of F(1{,7r,) = F(r, R)as 2-particle wave function
into which a macroscopic number of pairs is condensed.

Crudely:
BCS theory discusses the dependence of F(R, 1) on relative

coordinate r
GL theory discusses the dependence of F(R, 1) on COM

coordinate R.

Expect theory to be “simple” only if scale of variation with respect to
R is large compared to “scale of confinement” in 1, i.e. to pair radius
¢'. This is always true for T — T, since scale of variation in R set by
two characteristic lengths of GL theory, &, (T) and A(T), both of
which diverge as (T, — T)~/2, while &' remains finite in this limit.

For T well below T, é;; (T) and A(T) can become < €', so scale of
variation in R can become < &'. Qualitative picture is still valid, but
qguantitative theory is then very messy — do not attempt to cover here.

Define quite generally:
Y(R) =F(R,1),=¢

i.e. GL order parameter is simply COM wave function of Cooper
pairs. (but with normalization which may be different from that
in lecture 4)
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Q: Can we derive GL from (generalized) BCS?

A: Yes! (Gor’kov, 1959 — but needs Green’s function technigues)

A simplified approach: start from BCS model Hamiltonian
Viwr = —Vo)

1. Consider spatially uniform case, i.e. F(R,1) + f(R), so
that from our definition

YR)=const.=¥Y=F(r=0) = Z F (Fr = (ugvy))
k

where however F;, and hence W need not necessarily take
its thermal equilibrium value. What is the (free) energy
associated with a given value of W?

(a) Potential energy: this is just the pairing energy

<V>pair ==V Z Fy F;ck/ — _Volqjlz-
kkr <O-Zk> (ak)

»

so always favors nonzero (and large) value of V. (Oxi)

(b) Kinetic energy: a bit more tricky. Up to a constant,
KE = ), 2€;(0,). Evidently, since |(a%)| < 1, increasing

F, (E %(axk)) will decrease [{o,; )| from its N-state value
(sgn €;) and thus increase KE. In fact for a single spin K,

ATy, = 2lei] (1= (1 = 4IFe|)Y2 = |el (4IFe|? + 2| Fi* + )

so it is plausible that the quantity AT = };;,, AT}, will have a
similar expansion in terms of |¥|?: (with the |¥|? term +ve).
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c) Entropy: on rather general grounds expect this to be a
decreasing function of |¥|?, so if it is analytic expect again

terms in the free energy prop. to |¥|? and |¥|*, with
coefficient of |[¥|? term positive.

Quantitative calculation®: gives precise values for coefficients
a(T) and B(T) as well as for T, (the temperature for which
the negative (T-independent) term in the coefficient of |¥|? is
balanced by the positive term —TS(|¥|%)):

- 17¢3)  N(0)
a(T) = N(0) (T|/IZ(;|21)' A(T) = E 8m? (kgT,)?|Vyl|*

and so if we write F in terms of a normalized order

parameter A = VoW (= H, in Anderson pseudospin
picture), then

F(AT) =

T\ ~2 17033 1 -
Fo(T) + N(0) {— <1 _T_c> |A|2 +5 52 T’ |A|4+---}

and minimization of F(Z, T) with respect to A gives back
the BCS result that in thermal equilibrium (Z = A)

A(T) 7oy, = 3.08kpT. (1 —T/T,)*/?

* See e.g. appendix A, and for more details AJL, Quantum
I Liquids, appendix 5.E




2. The gradient term in the GL free energy: HKU 8.6

To derive this, let’s consider the case of uniform flow of the
condensate, so that

Y(1:T) = |‘Peq (T) | expi @(r)

It’s useful to define a quantity with the units of velocity:

h “ . . ”
v, = — V@ <«——— “superfluid velocity
2m
(note that V X vy = 0, $ v, - df = nh/2m). From
symmetry assume that for small v, extra energy due to the
flow is proportional to vZ, so define superfluid density p, by

1
AF10w (T) = 5 ps (T)vs

Imagine now a thought-experiment in which we start with
everything at rest, and “boost” both condensate and normal
component to a frame moving with velocity v. For the normal
component this is achieved (see lecture 7) by applying a vector
potential A = mv/e; the required momentum density is by
definition (p, (T)/p)mv, and the extra KE density is

1 1 :
Epn(T)v,zl - Epnvz. On the other hand, the extra energy density
acquired by boosting the condensate to velocity v is, as above,

1 1 : :

Epsvf = Epsvz. Since the total energy density due to the boost

must by Galilean invariance be %pvz, we have
pn(T) + ps(T) = p (= “2-fluid” picture)

and thus by result of Lecture 7
ps(T) = p(1=Y(D) = p(7¢(3)/4n(ksT)*)A*(T)

T > T,
I (Note that at nonzero T, it is ps(T) rather than p which enters
the expression for A, (T))
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If now we write the gradient term in the GL free energy in
the form (for A = 0)

AP0 (T) = y(DIVY)? = y(T)|Weq (1] (V)?

. | L
by comparing this with 5 Ps (T)vZ, we have the normalization-
independent relation

h*  ps(T)
8m? |W|%(T)

y(T) =

and in particular if we choose the normalization W(T) = A(T).

P n2 7¢(3) ( h?

4m 82 (k1) = —,8) = const.asT - T,

Generalizations: ,
(since Cooper

effect of vector potential: V-V — 2 %A(r) oair has charge
2e)

spatially varying case: provide scale of variation >> pair radius
able to regard the local free energy as a function of the local ¥(R)

FW:T) > F{Y(R):T}, F(T)=[F{¥Y(R:T)}dR

= complete GL free energy, QED

4 have assumed (rather than demonstrated) that correct form
I of gradient term is const|V¥|? = const (|¥|2(Vp)2+(V|¥|)?)




HKU 8.8

A “hand-waving” justification for the form of the gradient
energy in GL theory

In their original paper, GL assume without detailed argument
thatin the limit T — T,, where their complex order parameter
(OP) W(R) is small, the gradient terms in the free energy
density should have the simple form

Foraa{W(R)T} = y(T)|V¥(R)|?
However, if we split W explicitly into its amplitude and phase
Y(R) = A(R) expip(R)
then we can form two different real expressions which are

bilinear in the gradients and invariant under time reversal,
namely

F,(R) = 7,(T)[AR)*(Vo(R))’

Fo(R) = ya(D[VA(R)]?

and it is not immediately obvious that the coefficients are
identical, that is that we have

Yo (T) = va(T) = y(T) ()
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The following argument is intended to make it plausible
that eqn. (*) is indeed correct; it is not intended (at least in
its present form) to give the correct magnitude of y(T). The
argument is based on an analogy with a particle of spin %2
whose spin vector a(R) orients itself parallel to an R-
dependent magnetic field H (R) whose direction makes
angles 6(R), ¢ (R) with the z-axis. What is the Kinetic energy
|V 1 |% + |V, |? associated with this situation? Actually, the
question as so stated is not uniquely defined: we need to
supplement it with some further piece of information, e.g.
that the phase of ), (R) is constant. Then if we define the
complex quantity
o, (R) = 0,(R) + io,(R) and write it in terms of amplitude
phase, we find that in the limit 8(R) close to m for all R (only)
the kinetic energy is a constant times |V, (R)|? i.e. the phase

and amplitude terms have the same coefficient.
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Returning now to our original problem, we note that
provided all spatial variation are on a scale > the pair radius
¢o (which we recall does not diverge in the limit T — T,), we

can use a semiclassical description in which the quantities
F.(= ; «k 1N the Anderson pseudospin representation) are
functions of R. Moreover, we can generalize the description so
as to allow the Fj, to be complex: Fj, = %(Sxk + iSyk) = %Slk.

Then if we consider €, = |€x| > A (i.e. a pair state k well
above the Fermi energy) and postulate that the phase of the
vacuum state |00),, is independent of R, the situation is
exactly analogous to that analysed in the preceding paragraph,

and we find
KE, < |VF,|?

Of course, this expression is not, when summed over k, equal
to |VWP|? = |V X, Fi|?, so further argument is necessary to

obtain the quantitative expression for y(T).




At first sight, the above arguments may seem e

unnecessarily complicated, since we have seen that a possible
definition of the order parameter is the “effective” two-particle state
Y (r, R) into which N, Cooper pairs are condensed, why can we not
normalize 1 to 1 and argue that the kinetic energy is apart from

constants, simply N_ (T) times |V¢]|*?
Equivalently, it would seem that we could write the KE as

2
%(%) J dr [ dR|VF(r,R)|* =(for phase variations)
( A \2 2 2

%) [ [IF(rR)|* (Vp)?* drdR and use the fact that (see lecture 6)
that [ [|F(r,R)|* drdR = N,(T) to find that the coefficient of

((h/Zm)/Vgo)2 = v2 is just % N.(T), i.e.that p(T)/p = N.(T)/N.
But this conclusion is wrong. This is related to the fact that at all
temperatures, while the “number of pairs” has in it a factor of order
A/€s , the superfluid density ps does not (cf. the fact that the
normal-state conductivity does not contain a factor kzT/E; in both
cases the small shell of states close to the Fermi energy “drags” the
whole of the Fermi sea). At nonzero temperature both N.(T) and

ps(T) contain an extra T -dependent factor, which for T — T, is

I proportional to (T, — T).
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Summary of lecture 8

1. The original BCS theory, which assumes the COM of the
Cooper pairs to be at rest, may be generalized by
assuming their wave function to be a function of COM
variable R as well as relative variable r:

F(r) - F(r.R)

2. The GL OP W(R) may then be identified with F (7, R) -,
i.e. with the COM wave function of the Cooper pairs. It is
“macroscopic” in the sense that a macroscopic number of
pairs is condensed into it.

3. Inthelimit T — T,., BCS theory allows us to calculate the
GL parameters a(T), B(T),y(T) on the basis of
microscopic principles.
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Appendix:

A bare-bones sketch of how to get the results (*)
on S8.4 from BCS theory.

As in the main text, we consider a spatially uniform state and define
the GL OP W (which we can take without loss of generality to be
real) in terms of the Anderson pseudospins g} by

LIJEZO-XRESX
k

We do not assume that the gy, ’s satisfy the self-consistency
equation (BCS gap equation); we wish to find an expression for the
free energy F(W:T) for arbitrary (small) W. As noted in the text, the
contribution of the pairing terms is —V,|¥|?, independently of T. It
remains to find the minimum value of the remaining terms in the
free energy

(H, —uN) — TS = F, (Hy = Kinetic energy)

for given W.
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To find F; (KE + entropy terms) as a function of ¥ :

1. Use Lagrange multiplier technique, i.e. minimize not F;, but
rather F; — 2AY for fixed A, and obtain as a result ¥(1).

2. This is nothing but the BCS problem with A = A, so we obtain
2 _
Y1) =3 Xk Ex '(Dtanh [BE; (1)/2]

= JA(T) + PB(T) + 008 E, () = (e +42) "

3. The rest is algebra: invert to get A(W) and use F; = Fy +
2 [ Olp/l(‘li’) d¥’ to get

1
F,(W,T) = (const. +) A (D) |¥|? + =BA™*(T)|¥|*

2
where
1/dn
A(T) = Z:lekl‘1 tanhpf |€x|/2 EE o In(1.14€./kT)
K

_ d tanhfe,/2 1(dn 1 7
B(T)Z_Zk:d(eg) 26 E<d6> (nkBT)ZEC(?))

The condition that the total coefficient of |¥]? (including the potential
term), namely =V, + A1(T), should vanish then gives the BCS

equation for T, and an expansion to lowest order in T — T, then gives
the equations (*) on S8.4




