LECTURES ON SUPERCONDUCTIVITY

Anthony J. Leggett

Department of Physics
University of Illinois at Urbana-Champaign, USA

Hong Kong University
Spring 2024

LECTURE 8
05/01/2024
RELATION OF BCS AND GL THEORIES

Relation of BCS and GL Theories

Recap: GL is phenomenological theory of superconductivity, whose output is a free energy density \mathcal{F} expressed as a function of a (complex scalar) order parameter $\Psi(\mathbf{R})$: in its original (and only subsequently rigorously justified) form

$$\mathcal{F}\{\Psi(\mathbf{R}):T\} = \alpha(T)|\Psi(\mathbf{R})|^2 + \frac{1}{2}\beta(T)|\Psi(\mathbf{R})|^4 +$$

$$\gamma(T)\left|\nabla - 2\frac{ie}{\hbar}\mathbf{A}(R,t)\Psi(R)\right|^2 + \frac{1}{2}\mu_0^{-1}\left(\nabla \times \mathbf{A}(\mathbf{R})\right)^2$$

with

(for
$$T \to T_c$$
) $\alpha(T) = \alpha_0(T - T_c)$, $\beta(T) = \beta_0$, $\beta(T) = \alpha_0(T - T_c)$, $\beta(T) = \beta_0$, $\beta(T) = \alpha_0(T - T_c)$, $\beta(T) = \alpha_0(T - T_c)$.

On the other hand, BCS theory introduces a pair wave function F(r;T) which has a spatial extent $\xi' \sim \hbar v_F/\Delta(0)$, and an energy gap $\Delta(T)$.

What is relation between these two descriptions?

Clue: BCS approach as developed so far assumed pairing between $(k \uparrow)$ and $(-k \downarrow)$, i.e. COM of pairs at rest. But must be possible to generalize to COM in motion $(k+q/2 \uparrow)$ paired with $-k+q/2 \downarrow$ and even to spatially nonuniform behavior. So consider generalization

$$F(r)(\equiv F(r_1-r_2) \Rightarrow F(r_1,r_2) \equiv F(R,r)$$
 generalized pair wave function

- (a) probability amplitude to add an electron of spin \uparrow at r_1 , and one of spin \downarrow at r_2 to ground state (thermal equilibrium state) of N-particle system and reach ground state (thermal equilibrium state) of N+2- particle system.
- (b) eigenfunction of 2 particle density matrix $\hat{\rho}_2(r_1\sigma_1r_2\sigma_2:r_1'\sigma_1'r_2'\sigma_2')$ corresponding to single macroscopic eigenvalue].

Others: just think of $F(\mathbf{r}_1, \mathbf{r}_2) \equiv F(\mathbf{r}, \mathbf{R})$ as 2-particle wave function into which a macroscopic number of pairs is condensed.

Crudely:

BCS theory discusses the dependence of $F(\mathbf{R}, \mathbf{r})$ on relative coordinate \mathbf{r}

GL theory discusses the dependence of $F(\mathbf{R}, \mathbf{r})$ on COM coordinate \mathbf{R} .

Expect theory to be "simple" only if scale of variation with respect to ${\it R}$ is large compared to "scale of confinement" in ${\it r}$, i.e. to pair radius ξ' . This is always true for $T \to T_c$, since scale of variation in ${\it R}$ set by two characteristic lengths of GL theory, $\xi_{GL}(T)$ and $\lambda(T)$, both of which diverge as $(T_c - T)^{-1/2}$, while ξ' remains finite in this limit.

For T well below T_c , $\xi_{GL}(T)$ and $\lambda(T)$ can become $\lesssim \xi'$, so scale of variation in R can become $\lesssim \xi'$. Qualitative picture is still valid, but quantitative theory is then very messy – do not attempt to cover here.

Define quite generally:

$$\Psi(\mathbf{R}) \equiv F(\mathbf{R}, \mathbf{r})_{\mathbf{r}=0}$$

i.e. GL order parameter is simply COM wave function of Cooper pairs. (but with normalization which may be different from that in lecture 4)

Q: Can we derive GL from (generalized) BCS?

A: Yes! (Gor'kov, 1959 – but needs Green's function techniques)

A simplified approach: start from BCS model Hamiltonian $(V_{kk'} = -V_0)$

1. Consider spatially uniform case, i.e. $F(\mathbf{R}, \mathbf{r}) \neq f(\mathbf{R})$, so that from our definition

$$\Psi(\mathbf{R}) = \text{const.} \equiv \Psi \equiv F(\mathbf{r} = \mathbf{0}) \equiv \sum_{k} F_{k} \qquad (F_{k} \equiv \langle u_{k} v_{k}^{*} \rangle)$$

where however F_k and hence Ψ need not necessarily take its thermal equilibrium value. What is the (free) energy associated with a given value of Ψ ?

(a) Potential energy: this is just the pairing energy

$$\langle V \rangle_{pair} = -V_0 \sum_{kk'} F_k \, F_{k'}^* \equiv -V_0 |\Psi|^2.$$
 so always favors nonzero (and large) value of Ψ . $\langle \sigma_{zk} \rangle$

(b) Kinetic energy: a bit more tricky. Up to a constant, $KE = \sum_k 2\epsilon_k \langle \sigma_{zk} \rangle$. Evidently, since $|\langle \boldsymbol{\sigma}_k \rangle| \leqslant 1$, increasing $F_k \left(\equiv \frac{1}{2} \langle \sigma_{xk} \rangle \right)$ will decrease $|\langle \sigma_{zk} \rangle|$ from its N-state value (sgn ϵ_k) and thus increase KE. In fact for a single spin k,

$$\Delta T_k = 2|\epsilon_k| \left(1 - (1 - 4|F_k|^2)^{1/2} = |\epsilon_k| (4|F_k|^2 + 2|F_k|^4 + \cdots \right)$$

so it is plausible that the quantity $\Delta T \equiv \sum_k \Delta T_k$ will have a similar expansion in terms of $|\Psi|^2$: (with the $|\Psi|^2$ term +ve).

c) Entropy: on rather general grounds expect this to be a decreasing function of $|\Psi|^2$, so if it is analytic expect again terms in the free energy prop. to $|\Psi|^2$ and $|\Psi|^4$, with coefficient of $|\Psi|^2$ term positive.

Quantitative calculation*: gives precise values for coefficients $\alpha(T)$ and $\beta(T)$ as well as for T_c (the temperature for which the negative (T-independent) term in the coefficient of $|\Psi|^2$ is balanced by the positive term $-TS(|\Psi|^2)$):

$$\alpha(T) = N(0) \frac{(T/T_c - 1)}{|V_0|^2}, \qquad \beta(T) = \frac{1}{2} \frac{7\zeta(3)}{8\pi^2} \frac{N(0)}{(k_B T_c)^2 |V_0|^4}$$

and so if we write F in terms of a normalized order parameter $\widetilde{\Delta} \equiv |V_0|\Psi$ ($\equiv \mathcal{H}_{\chi}$ in Anderson pseudospin picture), then

$$F(\widetilde{\Delta}, T) = F_0(T) + N(0) \left\{ -\left(1 - \frac{T}{T_c}\right) |\widetilde{\Delta}|^2 + \frac{1}{2} \frac{7\zeta(3)}{8\pi^2} \frac{1}{(k_B T_c)^2} |\widetilde{\Delta}|^4 + \cdots \right\}$$

and minimization of $F(\widetilde{\Delta},T)$ with respect to $\widetilde{\Delta}$ gives back the BCS result that in thermal equilibrium $(\widetilde{\Delta}=\Delta)$

$$\Delta(T)_{T \to T_c} = 3.08k_B T_c (1 - T/T_c)^{1/2}$$

^{*} See e.g. appendix A, and for more details AJL, Quantum Liquids, appendix 5.E

To derive this, let's consider the case of uniform flow of the condensate, so that

$$\Psi(\mathbf{r};\mathbf{T}) = |\Psi_{eq}(T)| \exp i \varphi(r)$$

It's useful to define a quantity with the units of velocity:

(note that $\nabla \times \mathbf{v}_S \equiv 0$, $\oint \mathbf{v}_S \cdot \mathbf{d}\ell = nh/2m$). From symmetry assume that for small \mathbf{v}_S extra energy due to the flow is proportional to \mathbf{v}_S^2 , so define superfluid density ρ_S by

$$\Delta F_{flow}(T) = \frac{1}{2} \rho_s(T) \mathbf{v}_s^2$$

Imagine now a thought-experiment in which we start with everything at rest, and "boost" both condensate and normal component to a frame moving with velocity \mathbf{v} . For the normal component this is achieved (see lecture 7) by applying a vector potential $\mathbf{A} = m\mathbf{v}/e$; the required momentum density is by definition $(\rho_n(T)/\rho)m\mathbf{v}$, and the extra KE density is $\frac{1}{2}\rho_n(T)\mathbf{v}_n^2 \equiv \frac{1}{2}\rho_n\mathbf{v}^2$. On the other hand, the extra energy density acquired by boosting the condensate to velocity \mathbf{v} is, as above, $\frac{1}{2}\rho_s\mathbf{v}_s^2 \equiv \frac{1}{2}\rho_s\mathbf{v}^2$. Since the total energy density due to the boost must by Galilean invariance be $\frac{1}{2}\rho\mathbf{v}^2$, we have

$$\rho_n(T) + \rho_s(T) = \rho \ (\Rightarrow \text{``2-fluid'' picture})$$

and thus by result of Lecture 7

$$\rho_{S}(T) = \rho(1 - Y(T)) \cong \rho(7\zeta(3)/4\pi(k_{B}T_{c})^{2})\Delta^{2}(T)$$

$$T \to T_{c}$$

(Note that at nonzero T, it is $\rho_s(T)$ rather than ρ which enters the expression for $\lambda_L(T)$)

If now we write the gradient term in the GL free energy in the form (for ${\it A}=0$)

$$\Delta F_{flow}(T) = \gamma(T)|\nabla\Psi|^2 = \gamma(T)|\Psi_{eq}(T)|^2(\nabla\varphi)^2$$

by comparing this with $\frac{1}{2}\rho_S(T){\bf v}_S^2$, we have the normalization-independent relation

$$\gamma(T) = \frac{\hbar^2}{8m^2} \frac{\rho_s(T)}{|\Psi|^2(T)}$$

and in particular if we choose the normalization $\Psi(T) = \Delta(T)$.

$$\gamma(T) \equiv \rho \frac{\hbar^2}{4m} \frac{7\zeta(3)}{8\pi^2 (k_B T_c)^2} \left(\equiv \frac{\hbar^2}{4m} \beta \right) = const. \text{ as } T \to T_c$$

Generalizations:

effect of vector potential: $\nabla \to \nabla - 2 \frac{ie}{\hbar} A(r)$ (since Cooper pair has charge 2e)

spatially varying case: provide scale of variation \gg pair radius able to regard the local free energy as a function of the local $\Psi(R)$

$$\mathcal{F}(\Psi;T) \to \mathcal{F}\{\Psi(\mathbf{R});T\}$$
, $F(T) \equiv \int \mathcal{F}\{\Psi(\mathbf{R};T)\}d\mathbf{R}$
 \Longrightarrow complete GL free energy, QED

 \uparrow : have assumed (rather than demonstrated) that correct form of gradient term is const $|\nabla\Psi|^2 \equiv \text{const}(|\Psi|^2(\nabla\varphi)^2 + (\nabla|\Psi|)^2)$

A "hand-waving" justification for the form of the gradient energy in GL theory

In their original paper, GL assume without detailed argument that in the limit $T \to T_c$, where their complex order parameter (OP) $\Psi(\mathbf{R})$ is small, the gradient terms in the free energy density should have the simple form

$$F_{grad}\{\Psi(\mathbf{R})T\} = \gamma(T)|\nabla\Psi(R)|^2$$

However, if we split Ψ explicitly into its amplitude and phase

$$\Psi(\mathbf{R}) \equiv A(\mathbf{R}) \exp i\varphi(\mathbf{R})$$

then we can form two different real expressions which are bilinear in the gradients and invariant under time reversal, namely

$$F_{\varphi}(\mathbf{R}) \equiv \gamma_{\varphi}(T)[A(\mathbf{R})]^{2} (\nabla \varphi(R))^{2}$$

$$F_A(\mathbf{R}) \equiv \gamma_A(\mathbf{T}) [\nabla A(\mathbf{R})]^2$$

and it is not immediately obvious that the coefficients are identical, that is that we have

$$\gamma_{\varphi}(T) = \gamma_{A}(T) \equiv \gamma(T)$$
 (*)

The following argument is intended to make it plausible that eqn. (*) is indeed correct; it is **not** intended (at least in its present form) to give the correct magnitude of $\gamma(T)$. The argument is based on an analogy with a particle of spin ½ whose spin vector $\sigma(R)$ orients itself parallel to an Rdependent magnetic field $\mathcal{H}(R)$ whose direction makes angles $\theta(R)$, $\varphi(R)$ with the z-axis. What is the kinetic energy $|\nabla\psi_{\uparrow}|^2+|\nabla\psi_{\downarrow}|^2$ associated with this situation? Actually, the question as so stated is not uniquely defined: we need to supplement it with some further piece of information, e.g. that the phase of $\psi_{\downarrow}(\mathbf{R})$ is constant. Then if we define the complex quantity

 $\sigma_{\perp}(R) \equiv \sigma_{\chi}(R) + i\sigma_{\chi}(R)$ and write it in terms of amplitude phase, we find that in the limit $\theta(R)$ close to π for all R (only) the kinetic energy is a constant times $|\nabla \sigma_{\perp}(R)|^2$ i.e. the phase and amplitude terms have the same coefficient.

Returning now to our original problem, we note that provided all spatial variation are on a scale ≫ the pair radius ξ_0 (which we recall does **not** diverge in the limit $T \to T_c$), we can use a semiclassical description in which the quantities $F_k (\equiv \frac{1}{2} S_{xk}$ in the Anderson pseudospin representation) are functions of R. Moreover, we can generalize the description so as to allow the F_k to be complex: $F_k = \frac{1}{2} (S_{xk} + iS_{yk}) \equiv \frac{1}{2} S_{\perp k}$. Then if we consider $\epsilon_k = |\epsilon_k| \gg \Delta$ (i.e. a pair state **k** well above the Fermi energy) and postulate that the phase of the vacuum state $|00\rangle_k$ is independent of R, the situation is exactly analogous to that analysed in the preceding paragraph, and we find

$$KE_k \propto |\nabla F_k|^2$$

Of course, this expression is not, when summed over k, equal to $|\nabla \Psi|^2 = |\nabla \sum_k F_k|^2$, so further argument is necessary to obtain the quantitative expression for $\gamma(T)$.

At first sight, the above arguments may seem unnecessarily complicated, since we have seen that a possible definition of the order parameter is the "effective" two-particle state $\psi(r,R)$ into which N_c Cooper pairs are condensed, why can we not normalize ψ to 1 and argue that the kinetic energy is apart from constants, simply N_c (T) times $|\nabla \varphi|^2$?

Equivalently, it would seem that we could write the *KE* as $\frac{1}{2} \left(\frac{\hbar}{2m} \right)^2 \int d\mathbf{r} \int d\mathbf{R} \, |\nabla F(r, \mathbf{R})|^2 = \text{(for phase variations)}$ $\left(\frac{\hbar}{2m}\right)^2 \int \int |F(rR)|^2 (\nabla \varphi)^2 dr dR$ and use the fact that (see lecture 6) that $\int \int |F(r,R)|^2 dr dR = N_c(T)$ to find that the coefficient of $((\hbar/2m)/\nabla\varphi)^2 \equiv v_s^2$ is just $\frac{1}{2}N_c(T)$, i.e. that $\rho_s(T)/\rho = N_c(T)/N$. But this conclusion is wrong. This is related to the fact that at all temperatures, while the "number of pairs" has in it a factor of order Δ/ϵ_f , the superfluid density ρ_s does not (cf. the fact that the normal-state conductivity does not contain a factor k_BT/E_F ; in both cases the small shell of states close to the Fermi energy "drags" the whole of the Fermi sea). At nonzero temperature both $N_c(T)$ and $\rho_s(T)$ contain an extra T -dependent factor, which for $T \to T_c$ is proportional to $(T_c - T)$.

Summary of lecture 8

1. The original BCS theory, which assumes the COM of the Cooper pairs to be at rest, may be generalized by assuming their wave function to be a function of COM variable $\bf R$ as well as relative variable $\bf r$:

$$F(\mathbf{r}) \rightarrow F(\mathbf{r}.\mathbf{R})$$

- 2. The GL OP $\Psi(\mathbf{R})$ may then be identified with $F(\mathbf{r}, \mathbf{R})_{r=0}$, i.e. with the COM wave function of the Cooper pairs. It is "macroscopic" in the sense that a macroscopic number of pairs is condensed into it.
- 3. In the limit $T \to T_c$, BCS theory allows us to calculate the GL parameters $\alpha(T)$, $\beta(T)$, $\gamma(T)$ on the basis of microscopic principles.

Appendix:

A bare-bones sketch of how to get the results (*) on S8.4 from BCS theory.

As in the main text, we consider a spatially uniform state and define the GL OP Ψ (which we can take without loss of generality to be real) in terms of the Anderson pseudospins σ_k by

$$\Psi \equiv \sum_{k} \sigma_{xk} \equiv S_x$$

We do **not** assume that the σ_k 's satisfy the self-consistency equation (BCS gap equation); we wish to find an expression for the free energy $F(\Psi;T)$ for arbitrary (small) Ψ . As noted in the text, the contribution of the pairing terms is $-V_0|\Psi|^2$, independently of T. It remains to find the minimum value of the remaining terms in the free energy

$$(H_k - \mu N) - TS \equiv F_1$$
 $(H_k \equiv \text{kinetic energy})$

for given Ψ.

To find F_1 (KE + entropy terms) as a function of Ψ:

- 1. Use Lagrange multiplier technique, i.e. minimize not F_1 , but rather $F_1 2\lambda \Psi$ for fixed λ , and obtain as a result $\Psi(\lambda)$.
- 2. This is nothing but the BCS problem with $\Delta \to \lambda$, so we obtain $\Psi(\lambda) = \frac{\lambda}{2} \sum_{k} E_{k}^{-1}(\lambda) \tanh \left[\beta E_{k}(\lambda)/2\right]$ $= \lambda A(T) + \lambda^{3} B(T) + O(\lambda^{5}) \quad E_{k}(\lambda) \equiv \left(\epsilon_{k}^{2} + \lambda^{2}\right)^{1/2}$
- 3. The rest is algebra: invert to get $\lambda(\Psi)$ and use $F_1 = F_0 + 2 \int_0^{\Psi} \lambda(\Psi') \, d\Psi'$ to get

$$F_1(\Psi, T) = (const. +)A^{-1}(T)|\Psi|^2 + \frac{1}{2}BA^{-4}(T)|\Psi|^4$$
 where

$$A(T) \equiv \sum_{k} |\epsilon_{k}|^{-1} \tanh\beta \ |\epsilon_{k}|/2 \equiv \frac{1}{2} \left(\frac{dn}{d\epsilon}\right) \ln(1.14\epsilon_{c}/kT)$$

$$B(T) \equiv -\sum_{k} \frac{d}{d(\epsilon_{k}^{2})} \frac{\tanh\beta \epsilon_{k}/2}{2\epsilon_{k}} \equiv \frac{1}{2} \left(\frac{dn}{d\epsilon}\right) \frac{1}{(\pi k_{B}T)^{2}} \cdot \frac{7}{8} \zeta(3)$$

The condition that the total coefficient of $|\Psi|^2$ (including the potential term), namely $-V_0+A^{-1}(T)$, should vanish then gives the BCS equation for T_c , and an expansion to lowest order in $T-T_c$ then gives the equations (*) on S8.4

