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Experimental fact: 
Quite strong nonmagnetic disorder (e.g. alloying) 
does little harm to superconductivity, while even 
tiny amounts (~ a few ppm) of magnetic impurities 
suppress it completely. 

Why?
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A. Nonmagnetic Disorder

଴

଴
௜
ଶ

௜

௜

Assume: ௙ (but possibly ଴)

Eigenstates of ଴ are of form

௡ ௡ with energy 𝜖௡

where ௡ is very complicated.

However, note that average density of states
ௗ௡

ௗఢ ௡௡

is much the same (for ௙ ) as in original (crystalline) case.

Crucial point: since ଴ is invariant under time-reversal
( ௡ ௡

∗ , 
then if state is an eigenstate of ଴ with energy ௡,  
then is also eigenstate of ଴ with energy ௡ .

Note: ௡ത may or may not be identical to ௡ , i.e. ௡ may
or may not be real (doesn’t matter!).

single-
electron

inter-electron
interaction

potential due to
atomic cores

spin-independent
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௞

௞

So, replace by and generalize BCS ansatz:

௡

௡

Assume as in free-space case that at T=0 are irrelevant, then
௡ ௡ ௡ ௡

ଶ
௡

ଶ

i.e. pair in time-reversed states

KE is identical to free-space case with :

௡ ௡
ଶ

௡

For the PE, as in the free-space case, we need to calculate the matrix 
element

௙ ௜௡

For a δ-function interaction ௜ ௝ ଴ ௜ ௝ , this is equal to 

଴ ௡ ௡ᇲ
∗

௡ᇲ ௡ ௡ᇲ
∗

௡തᇲ
∗

௡ ௡ത

But since ௡ത
∗

௡ (etc.), this can be rewritten (regrouping the u’s 
and v’s)

଴ ௡ ௡ ௡ᇲ ௡ᇲ
∗

௡ᇲ
ଶ

௡
ଶ

For normalization in unit volume the integral, though not exactly equal to 
1, is very close to it, so 

଴ ௡ ௡ ௡ᇲ ௡ᇲ
∗

௡,௡ᇲ
଴ ௡ ௡ᇲ

∗

௡

௞ state vector in “occupation 
space” of 

௞ state vector in “occupation 
space” of 

with   ௜௡
ᇱ ᇱ

௙
ᇱ ᇱ

௡ ௡
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The subsequent algebra goes through exactly as in the free-space case, 
and we end up with the gap equation

௡ ଴
௡ᇲ

௡ᇲ
௡ᇲ

௡ ௡
ଶ

௡
ଶ

ଵ
ଶ

Assuming ௡ and turning the ௡ :

଴
ଶ ଶ ଵ

ଶൗ

ఢ೎

ିఢ೎

Since is (almost) the same as for the original free-space case, this 
is (almost) the original BCS gap equation and has the same solution

௖
ିଵ ே ଴ ௏⁄ ଵ

ଶ

ୢ௡

ୢఢ ఢୀఢ೑

Thus,

thermodynamics almost unaffected by alloying

(in zero magnetic field, for ி )

(we have simply “shuffled the original plane-wave states around”)

Similar results at non-zero T, e.g. ఞ ்

ఞ೙
(Yosida function) 

(since still eigenstates of spin)

However, calculation of normal density does not go through

( single-particle energy eigenstates are not eigenstates of 
momentum) 
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Which quantities are qualitatively affected by (nonmagnetic) alloying?

As we have seen, thermodynamics (hence 𝑐 ) not qualitatively 
affected.

Thus, Cooper pair radius  ଴ ୊ ଴
ଵ ଶ⁄ , 

i.e.

ௗ௜௥௧௬ ଴
భ
మ⁄

௖௟௘௔௡ (can be ௖௟௘௔௡)

Perhaps less obviously, in GL regime and little affected, but 
multiplied by factor ௢. Hence 

ௗ௜௥௧௬ ௖௟௘௔௡

but
ௗ௜௥௧௬ ଴

ଵ ଶ⁄
௖௟௘௔௡ ௖௟௘௔௡

Recall: ௖
ଵ ଶ⁄ ,          ଶ ଵ ଶ⁄

Thus,

ௗ௜௥௧௬ ଴
ଵ ଶ⁄

௖௟௘௔௡ ௖௟௘௔௡

ௗ௜௥௧௬ ଴
ଵ ଶ⁄

௖௟௘௔௡ ௖௟௘௔௡

 ௗ௜௥௧௬ ௗ௜௥௧௬ ଴ ௖௟௘௔௡ ௖௟௘௔௡

 alloying makes system much more type-II
in particular,

௖ଵ much decreased
௖ଶ much increased  best (classic) high-field sups are very dirty!

But: Single-particle motion is now diffusive
rather than ballistic, so an electron which in 
free space would have travelled a distance r
now travels only ଵ ଶ⁄ mean free path)
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B. Magnetic disorder

Now we have
଴

but now
଴ ௜ ௜ ௜௜

so now TRI (Time Reversal Invariance) is broken, and state 
(when ௡ത ௡

∗ ) is no longer degenerate with . (Indeed, 
in general neither of these is even an energy eigenstate, since the 
latter are in general 2-component spinors.)

Two obvious proposals for GS:

(a) Pair in exact eigenfunctions of single-particle Hamiltonian, i.e. if 

exact spinor eigenstates of 
^

଴ are denoted ௠ , pair off with 
some ( ).

Then KE is much the same as in pure (BCS) case. However, even if we 
ignore the spin degree of freedom

଴ ௡
∗

௠
∗

௠ᇲ ௡ᇲ

௠௠ᇲ

and since we no longer have ௡ത ௡
∗ (etc.) the integral is 

oscillating and hence very small. This scheme is usually very 
energetically disadvantageous.

single-electron Inter-electron 
interaction

note all components of !
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extra energy required ௦ no. of 
perturbed states ௦ ௦

௦
ଶ .

On the other hand, this scheme keeps 
(nearly) the whole of the pure-state 
condensation energy, which is

଴
ଶ ௗ௡

ௗఌ
( ଴ gap of pure system)

Hence we expect that this scheme will give an energy lower than 

the provided ௌ
ଶ , i.e. condition for 

magnetic impurities to suppress superconductivity completely is

௦ ଴

which is equivalent to ௦ ଴. (i.e. mean free path against spin-
dependent scattering (pure metal) pair radius). Actually, exact
calculation (Abrikosov-Gor'kov) shows that while neither of the 
above schemes is exactly right, at condition is in fact simply 
௦ ଴) . 

(b) Continue to pair in time-reversed states, even though these are 
no longer eigenstates of ଴. How much extra single-particle energy 
does this cost? Suppose “lifetime for different scattering of and ” 
is ௦ ௦

ିଵ then by indeterminacy principle extra energy 
necessary to keep state of the time-reverse of that of is ௦

ி

௦

(An extensive and beautiful discussion of superconductivity in the 
presence of time-reversal violation is given by P.-G. de Gennes in 
his classic book “Superconductivity of Metals and Alloys”
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Non-BCS Superconductivity

“BCS” superconductors (i.e. those discovered (mostly) 
before 1975, and well explained by original BCS theory) seem to have the 
following properties in common:

A. Directly observed properties
1. crystal structure simple (and 3-dimensional)
2. Tc stoichiometry-insensitive (except for standard magnetic-impurity 

effects)
3. No neighboring phase transition
4. Normal state Fermi-liquid-like (e.g. R(T) fits Bloch-Gruneisen formula)
5. Under ambient conditions, ௖

*

B. Inferred properties
6. Mechanism is exchange of virtual phonons
7. Order parameter s-wave

Some (classes of) non-BCS superconductors

A-list properties
Class Example violated
 BKBO, MgB2 5

fullerenes Rb3C60 1,2
heavy fermions UPt3 3,4

organics BEDT-TTF 1,4
ruthenates Sr2RuO4 1,4

ferropnictides LaFeAso1-xOT- 1,2,3,5
cuprates YBa2Cu3O7- all

Most of above are inferred to violate also 6 and/or 7. How do we tell?

*Some metallic hydrides are superconducting at close to RT, but only at 
pressures ~ 100 Gpa. In all other respects they are believed to be “BCS”
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Phonon versus non-phonon mechanisms

Original BCS prediction: ௖ ஽

Debye freq, ିଵ/ଶ independent of isotopic mass

thus predict: if superconductors which are chemically
identical but have different isotopic masses are compared

௖
ିఈ

Prediction satisfied by most "classic" superconductors (Al, Sn, 
Pb, ...): a few exceptions, but understood by more 
sophisticated phonon-plus-Coulomb theory (McMillan) giving

ଵ

ଶ
, may be 

No examples of classic superconductor with known.

So (eg cuprates) suggests non-phonon mechanism

However, all evidence (flux quantization, Josephson effect...) 
suggests even exotic superconductivity still based on Cooper 
pairing.

If phonons don't play a role, must be "all-electronic", ie
Coulomb mechanism!

(“isotope effect”)
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But Coulomb interaction, even when screened, is intrinsically 
repulsive!

^

଴

^ ^

଴

^ ^ ^ ^ ^

ୡ୭୳୪

kinetic energy potential of static lattice

so prima facie only 2 possibilities:

1. Cooper pairing reduces ଴

^

2.          "      "            "             

Option 1 ଴ in N state already considerably > noninteracting-
electron value, i.e. N state is not simple Fermi sea.

Option 2 ୡ୭୳୪ already large in N state

non-phonon superconductivity "strongly correlated" 
normal state

So in either case
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Symmetry of OP

For an arbitrary geometry in the absence of spin-orbit 
coupling, the possible symmetries of the OP are 
characterized by orbital parity and total spin and the Pauli 
principle implies that the spin singlet state is associated with 
even parity and the spin triplet with add parity. Thus in free 
space (e.g. Superfluid ଷ ) L+S = even.

In the real-life "exotic" superconductors symmetry 
considerations modified:

(1) many are quasi-2D -> symmetry of OP defined only 
within plane

(2) crystal lattice breaks symmetry, e.g. in square lattice 
ସ௩ .  In the following I use this example 

(which has played an important role historically) to 
illustrate the general principles.

Note: asymmetry usually assumed to be pinned to lattice.
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Symmetry of the order parameter (OP) in a crystal lattice

Any given crystal lattice will be invariant under a group of 
symmetry operations. These include crystal translations (not of much 
interest in the present context) plus the operations of the point 
group: e.g. a tetragonal lattice is invariant under the “group of the 
square”, ସ௩. This group contains

rotation through /2 around the z-axis గ ଶ⁄

inversion in a crystal axis ௔௫௜௦
inversion in a diagonal axis ௗ௜௔௚

but these are actually not independent since గ ଶ⁄ ௔௫௜௦ ௗ௜௔௚ (the 
identity). Consequently it will be necessary to deal with (say) only 
గ ଶ⁄ and  ௔௫௜௦: note that ௔௫௜௦

ଶ
గ ଶ⁄
ସ .  Moreover, it is 

unnecessary in the present context to distinguish between coordinate 
and momentum space: the considerations related to symmetry are 
the same in the two cases.

In BCS theory, the - space components of the OP, 𝒌, are simply 
related to those of the (complex) energy gap function 𝒌:

௞ ௞ ௞

so that provided that the scalar quantity ௞ is invariant under the 
operations of the point group, the quantities ௞ and ௞ transform 
identically under those operations. While it is perhaps not 100% 
obvious that this remains true in non-BCS theories, I shall follow the 
vast bulk of the literature in assuming that it does, and thus talk 
indifferently about the symmetry of the OP and that of the (complex) 
gap.
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Since the Hamiltonian is invariant under the operations of the 
point group, it follows that if ௞ (or ) describes a possible 
superconducting state, then so does ௞ where is any 
operation of the point group. A sufficient (though not obviously 
in general necessary*) condition for this to hold is that 

௞
௜ఝ

௞

where, since the quantity ௞ must return to itself under 
operations which return the identity, must be equal to 
when ௔௫௜௦ and equal to when గ/ଶ.

*In the general case, the usual statement is that any viable OP, at 
least in the limit ௖ , must correspond to an “irreducible 
representation” of the relevant point group. The results quoted 
here for ସ௩ are a special case of this prescription. 



HKU 10.15

Let’s consider first the odd-parity representations of ସ௩, that is, 
those for which ௔௫௜௦ has eigenvalue . Since in 2D ௔௫௜௦ గ/ଶ

ଶ , 
this means that the only possibilities for the eigenvalue of గ/ଶ are 

. Thus the allowed form of the OP in -space is schematically of 
the form 

conventionally known in the literature as the ( ) (or 
௫ ௬ ) form, or its twin “ ” with . This form of OP 

(not so far definitely established to occur in any metallic 
superconductor, but believed to be realized in the superfluid A 
phase of liquid ଷ ) is of great interest in the context of 
topological quantum computing, see lecture 14. Note that there is 
no requirement that the gap vanishes on the diagonals.
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Now we turn to the even-parity representations of ସ௩; which have 
been of great interest in the context of the cuprates, which are 
known to be spin singlet and thus even parity. The results are most 
easily displayed in the form of a table:

Possible even-parity forms of the OP in tetragonal symmetry

+

+

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Symmetry of OP: how do we tell?

(1) spin susceptibility : if ( ), is reduced 
in S state because to polarize system must break up Cooper 
pairs (c.f. lecture 7). For pairing effect is either absent 
or reduced, e.g. if ௭ (as in ଷ -A ), since pairing 
scheme below is possible, 

ௌ ே

(2)s-wave state usually has non-zero 
minimum value of excitation energy 
("gap") as number of excitations 

specific heat, etc., 
exponentially small. 
By contrast most (but not all) exotic 
pairing states have "nodes" in gap (

for some 
→

) -> substantial number of 
excitations as specific heat, etc. 
proportional to some power of .

(3) Effect of nonmagnetic impurities: for a simple s-wave 
state in free space (BCS case) ௖ is virtually unaffected. For 
the case of an s-wave state in a lattice, expect some 
depression but not to . However, for an "exotic" state (p-
wave, d-wave, ...) nonmagnetic impurities have a 
qualitatively similar effect to magnetic impurities in BCS, i.e.

௖ ଴

relevant scattering rate (rms) gap for pure case
Thus, e.g., the fact that very small concentrations of 
impurities in ଶ ସ drive ୡ to was (until 2019) usually 
taken as evidence for exotic pairing.
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(4). Phase-sensitive (Josephson)  experiments (UIUC,PSU,…)

refinement of SQUID geometry

General principle: For maximum critical current of device as whole,
௜௜ where ௜ includes "internal" phase differences 

due to "rotation" of pair wave function
e.g. in YBCO

s-wave ௫మି௬మ

Au0.5In0.5

similarly for 
ଶ ସ if -wave

Josephson
junction

YBCO

Josephson
junction

Pb
(s-wave)

+

++

+ - -


