Tutorial: Solving Spin-Fermion Model with DQMC

Gaopei Pan
Insitute of Physics, CAS
University of Chinese Academy of Sciences
pangaopei14@mails.ucas.ac.cn

October 11, 2019

Overview

(1) Monte Carlo simulation method and process

- Markov Chain Monte Carlo(MCMC)
- Metropolis-Hastings Algorithm
- An simple example: Ising model
(2) DQMC(Determinant Quantum Monte Carlo)
- Model
- Partition Function
- Sign Problem
- Update
- Numerical Stabilization
- Operator and Measurment
(3) Some Results of Hubbard Model
- Kinetic Energy
- Double Occupancy
- $S(\pi, \pi)$

Markov Chain

What is Markov Chain?

We say that $\left\{X_{0}, X_{1}, \ldots\right\}$ is a discrete time Markov chain with transition matrix $p(i, j)$ if for any $j, i, i_{n-1}, \ldots, i_{1}, i_{0}$,

$$
P\left(X_{n+1}=j \mid X_{n}=i, X_{n-1}=i_{n-1}, \ldots, X_{0}=i_{0}\right)=p(i, j)
$$

Note that the transition probability $p(i, j)$ can also be written as

$$
p(i, j)=P\left(X_{n+1}=j \mid X_{n}=i\right)
$$

Markov Chain

$$
p=\left[\begin{array}{lll}
0.65 & 0.28 & 0.17 \tag{1}\\
0.15 & 0.67 & 0.18 \\
0.12 & 0.36 & 0.52
\end{array}\right]
$$

Stationary Distribution

Let $p(x, y)$ be the transition matrix of a Markov chain. If $\pi(x)$ is a probability function on the state space of the Markov chain, such that

$$
\sum_{x} \pi(x) p(x, y)=\pi(y), \quad \text { or in the matrix form } \quad \pi p=\pi
$$

we say that $\pi(x)$ is a stationary distribution.

Theorem

If the Markov chain is irreducible and aperiodic, then there is a unique stationary distribution. Additionally, in this case p^{k} converges to a rank-one matrix in which each row is the stationary distribution π :

$$
\begin{equation*}
\lim _{k \rightarrow \infty} \mathbf{p}^{k}(i,:)=\pi \tag{2}
\end{equation*}
$$

After a transpose operation, π^{T} is just like eigenvector.

Markov Chain Monte Carlo(MCMC)

There is a given probability distribution $P(X)$. We hope we can get a markov chain whose stationary distribution is the given $P(X)$, which means after enough sweep steps, obtained sample satisfies $P(X)$.

For example, P is $W(C)=\frac{e^{-\beta H(C)}}{Z}$, where $Z=\sum_{\text {all C1qonfigurations }} e^{-\beta H(C)}$

Detailed Balance Condition

How can we get the probability distribution we want?
Only need to satisfy the detailed balance condition

$$
\begin{equation*}
\pi(i) p(i, j)=\pi(j) p(j, i) \tag{3}
\end{equation*}
$$

Verify as follows:

$$
\begin{equation*}
\sum_{i} \pi(i) p(i, j)=\sum_{i} \pi(j) p(j, i)=\pi(j) \sum_{i} p(j, i)=\pi(j) \tag{4}
\end{equation*}
$$

Metropolis-Hastings Algorithm

1. Pick an initial x_{0}, set $t=0$
2. Iterate
a. Generate: randomly generate a candidate state x^{\prime} according to $g\left(x^{\prime} \mid x_{t}\right)$;
b. Calculate: calculate the acceptance probability
$R\left(x^{\prime}, x_{t}\right)=\min \left(1, \frac{P\left(x^{\prime}\right)}{P\left(x_{t}\right)} \frac{g\left(x_{t} \mid x^{\prime}\right)}{g\left(x^{\prime} \mid x_{t}\right)}\right) ;$
c. Accept or Reject: generate a uniform random number $u \in[0,1]$.

IF $u \leq R\left(x^{\prime}, x_{t}\right)$, accept and set $x_{t+1}=x^{\prime}$. ELSE reject and $x_{t+1}=x_{t}$
d. set $t=t+1$

Where $g\left(x^{\prime} \mid x\right)$ is proposal distribution and $R\left(x^{\prime}, x\right)$ is acceptance ratio. (From wiki)

An simple example: Ising model

$$
\begin{equation*}
H=-J \sum_{\langle i, j\rangle} s_{i} s_{j} \tag{5}
\end{equation*}
$$

1. Pick an initial Configuration $\left\{s_{i}\right\}$, set $t=0$
2. Iterate
a. Generate: try to randomly flip a spin: $s_{i}=-s_{i}$;
b. Calculate: calculate the acceptance probability
$R=\min \left(1, e^{-\beta \Delta H}\right)$;
c. Accept or Reject: generate a uniform random number $u \in[0,1]$.

IF $u \leq R\left(x^{\prime}, x_{t}\right)$, accept. Flip the spin successfully.
ELSE reject, don't flip the spin.
d. set $t=t+1$

DQMC(Determinant Quantum Monte Carlo)

What does 'determinant' mean here?

$$
\begin{equation*}
\operatorname{Tr}\left[e^{-\sum_{i, j} c_{i}^{\dagger} A_{i, j} c_{j}} e^{-\sum_{i, j} c_{i}^{\dagger} B_{i, j} c_{j}}\right]=\operatorname{Det}\left(1+e^{-\mathbf{A}} e^{-\mathbf{B}}\right) \tag{6}
\end{equation*}
$$

Model: A Spin-Fermion coupled Model

$$
\begin{equation*}
H=H_{f}+H_{s}+H_{f-s} \tag{7}
\end{equation*}
$$

where

$$
\begin{align*}
H_{f}= & -t_{1} \sum_{\langle i j\rangle, \lambda, \sigma} c_{i, \lambda, \sigma}^{\dagger} c_{j, \lambda, \sigma}-t_{2} \sum_{\langle\langle i j\rangle\rangle, \lambda, \sigma} c_{i, \lambda, \sigma}^{\dagger} c_{j, \lambda, \sigma} \\
& -t_{3} \sum_{\langle\langle i j\rangle\rangle\rangle, \lambda, \sigma} c_{i, \lambda, \sigma}^{\dagger} c_{j, \lambda, \sigma}+h . c .-\mu \sum_{i, \lambda, \sigma} n_{i, \lambda, \sigma} \tag{8}\\
H_{s}= & -J \sum_{\langle i j\rangle} s_{i}^{z} s_{j}^{z}-h \sum_{i} s_{i}^{x} \tag{9}\\
H_{f-s}= & -\xi \sum_{i} s_{i}^{z}\left(\sigma_{i, 1}^{z}-\sigma_{i, 2}^{z}\right) \tag{10}
\end{align*}
$$

and $\sigma_{i, \lambda}^{z}=\frac{1}{2}\left(c_{i, \lambda, \uparrow}^{\dagger} c_{i, \lambda, \uparrow}-c_{i, \lambda, \downarrow}^{\dagger} c_{i, \lambda, \downarrow}\right)$ is the fermion spin along z.

Model: A Spin-Fermion coupled Model

Model: Hubbard Model

The half-filling Hubbard model on square lattice can be written as

$$
\hat{H}=-t \sum_{\langle i j\rangle \sigma} \hat{c}_{i \sigma}^{\dagger} \hat{c}_{j \sigma}+\text { h.c. }+U \sum_{i}\left(\hat{n}_{i \uparrow}-\frac{1}{2}\right)\left(\hat{n}_{i \downarrow}-\frac{1}{2}\right)
$$

To perform the DQMC simulation of this model, we start with representing the partition function as a sum over a configuration space. The partition function writes

$$
\begin{aligned}
Z & =\operatorname{Tr}\left[e^{-\beta \hat{H}}\right] \\
& =\operatorname{Tr}\left[\left(e^{-\Delta \tau \hat{H}}\right)^{M}\right]
\end{aligned}
$$

Model: Hubbard Model

To take care of the interaction part, we need do the HS transformation

$$
\begin{aligned}
e^{-\Delta \tau \hat{H}_{l}} & =\prod_{i} e^{-\Delta \tau U\left(\hat{n}_{i \uparrow}-\frac{1}{2}\right)\left(\hat{n}_{i \downarrow}-\frac{1}{2}\right)} \\
& =\prod_{i} \lambda \sum_{s_{i, \tau}= \pm 1} e^{\alpha s_{i, \tau}\left(\hat{n}_{i \uparrow}-\hat{n}_{i \downarrow}\right)} \\
& =\lambda^{N} \sum_{s_{i, \tau}= \pm 1}\left(\prod_{i} e^{\alpha s_{i, \tau} \hat{n}_{i \uparrow}} \prod_{i} e^{-\alpha s_{i, \tau} \hat{n}_{i \downarrow}}\right)
\end{aligned}
$$

Partition Function

We should first trace out the bare transverse field Ising model. We know that

$$
\begin{equation*}
e^{\Delta \tau h \hat{s}_{i}^{X}}=\cosh (\Delta \tau h) \mathbf{1}+\sinh (\Delta \tau h) \hat{s}_{i}^{X} \tag{11}
\end{equation*}
$$

And we require:

$$
\begin{equation*}
\left\langle S_{z}^{\prime}\right| e^{\Delta \tau h \hat{s}_{i}^{x}}\left|S_{z}\right\rangle=\Lambda e^{\gamma s_{z}^{\prime} s_{z}} \tag{12}
\end{equation*}
$$

Just take $S_{z}= \pm 1$, we can get

$$
\begin{align*}
\left\langle S_{z}\right| e^{\Delta \tau h \hat{s}_{i}^{x}}\left|S_{z}\right\rangle & =\cosh (\Delta \tau h)=\Lambda e^{\gamma} \tag{13}\\
\left\langle-S_{z}\right| e^{\Delta \tau h \hat{s}_{i}^{x}}\left|S_{z}\right\rangle & =\sinh (\Delta \tau h)=\Lambda e^{-\gamma}
\end{align*}
$$

Partition Function

Spin part:

$$
\begin{align*}
Z_{\text {spin }} & =\operatorname{Tr}\left\{e^{-\beta H_{\text {spin }}}\right\} \\
& =\left(\prod_{\tau} \prod_{\langle i j\rangle} e^{\Delta \tau J s_{i, \tau}^{2} s_{j, \tau}^{z}}\right)\left(\prod_{i} \prod_{\left\langle\tau, \tau^{\prime}\right\rangle} \Lambda e^{\gamma s_{i, \gamma}^{z} s_{j, \tau^{\prime}}^{z}}\right)+O\left(\Delta \tau^{2}\right) \tag{14}
\end{align*}
$$

where

$$
\begin{array}{r}
\gamma=-\frac{1}{2} \ln (\tanh (\Delta \tau h)) \tag{15}\\
\Lambda^{2}=\sinh (\Delta \tau h) \cosh (\Delta \tau h)
\end{array}
$$

Trotter Decomposition

$$
\begin{align*}
Z & =\operatorname{Tr}\left\{e^{-\beta H}\right\}=\operatorname{Tr}\left\{\left(e^{-\Delta \tau H_{1}} e^{-\Delta \tau H_{0}}\right)^{M}\right\}+O\left(\Delta \tau^{2}\right) \\
& =\sum_{\mathcal{C}} \mathcal{W}_{己}^{S} \operatorname{Tr}\left\{\prod_{\tau=M}^{1} e^{e^{t} V(\mathcal{C}) \hat{e}} e^{-\Delta \tau \tau^{t} T c}\right\}+O\left(\Delta \tau^{2}\right) \tag{16}
\end{align*}
$$

Define

$$
\begin{align*}
& \hat{U}\left(\tau_{2}, \tau_{1}\right)=\prod_{n=n_{1}+1}^{n_{2}} e^{\hat{c}^{\dagger} V(\mathcal{C}) \hat{c}} e^{-\Delta \tau \hat{c}^{\dagger} T \hat{c}} \\
& B\left(\tau_{2}, \tau_{1}\right)=\prod_{n=n_{1}+1}^{n_{2}} e^{V(\mathcal{C})} e^{-\Delta \tau T} \tag{17}
\end{align*}
$$

Then

$$
\begin{equation*}
Z=\sum_{\mathcal{C}} \mathcal{W}_{\mathcal{C}}^{\mathcal{S}} \operatorname{Tr}\{\hat{U}(\beta, 0)\}=\sum_{\mathcal{C}} \mathcal{W}_{\mathcal{C}}^{\mathcal{S}} \operatorname{det}[\mathbf{1}+B(\beta, 0)] \tag{18}
\end{equation*}
$$

Sign Problem

Sometimes the weight $W(C)$ is not a real positive number. We say that we meet sign-problem.

Theorem (CJ Wu, SC Zhang, Phys. Rev. B 71, 155115 (2005))

If there exists an antiunitary operator T, such that

$$
T H_{K} T^{-1}=H_{K}, \quad T H_{l} T^{-1}=H_{l}, \quad T^{2}=-1
$$

then the eigenvalues of the $I+B$ matrix always appear in complex conjugate pairs, i.e., if λ_{i} is an eigenvalue, then λ_{i}^{*} is also an eigenvalue. If λ_{i} is real, it is twofold degenerate. In this case, the fermion determinant is positive definite,

$$
\operatorname{det}(I+B)=\prod_{i}\left|\lambda_{i}\right|^{2} \geqslant 0
$$

where H_{K} is imaginary time-independent kinetic energy term and H_{l} is imaginary time-dependent decoupled interaction term.

Sign Problem

$\hat{H}_{0}=-J \sum_{\langle i j\rangle} \hat{s}_{i}^{z} \hat{s}_{j}^{z}-t \sum_{\langle i j\rangle \lambda \sigma} \hat{c}_{i \lambda \sigma}^{\dagger} \hat{c}_{j \lambda \sigma}+$ h.c. $-\mu \sum_{i \lambda \sigma} \hat{n}_{i \lambda \sigma}-\xi \sum_{i} s_{i}^{z}\left(\hat{\sigma}_{i 1}^{z}-\hat{\sigma}_{i 2}^{z}\right)$
Note that \hat{H}_{0} is time reversal (combine with τ_{x} on orbital space) invariant, then we can simulate any filling case without sign problem
$\hat{H}_{0} \xrightarrow{\mathcal{T}}$

$$
-J \sum_{\langle i j\rangle} \hat{s}_{i}^{z} \hat{s}_{j}^{z}-t \sum_{\langle i j\rangle \lambda \sigma} \hat{c}_{i \lambda \bar{\sigma}}^{\dagger} \hat{c}_{j \lambda \bar{\sigma}}+\text { h.c. }-\mu \sum_{i \lambda \bar{\sigma}} \hat{n}_{i \lambda \bar{\sigma}}-\xi \sum_{i} s_{i}^{z}\left(-\hat{\sigma}_{i 1}^{z}+\hat{\sigma}_{i 2}^{z}\right)
$$

τ_{\times}on orbital space
$-J \sum_{\langle i j\rangle} \hat{s}_{i}^{z} \hat{s}_{j}^{z}-t \sum_{\langle i j\rangle \lambda \sigma} \hat{c}_{i \lambda \bar{\sigma}}^{\dagger} \hat{c}_{j \lambda \bar{\sigma}}+$ h.c. $-\mu \sum_{i \lambda \bar{\sigma}} \hat{n}_{i \lambda \bar{\sigma}}-\xi \sum_{i} s_{i}^{z}\left(-\hat{\sigma}_{i 2}^{z}+\hat{\sigma}_{i 1}^{z}\right)$
$=\hat{H}_{0}$

Sign Problem

Another point of view: The Hamiltonian is block diagonal as four orbitals, which is

$$
\left(\tau_{z}, \sigma_{z}\right)=[\uparrow 1, \downarrow 1, \uparrow 2, \downarrow 2]
$$

We can see $H_{\uparrow 1}=H_{\downarrow 2}, H_{\uparrow 2}=H_{\downarrow 1}$. Regroup four orbitals into two superposition

$$
\left(\alpha_{1}, \alpha_{2}\right)=[(\uparrow 1, \downarrow 2),(\uparrow 2, \downarrow 1)]
$$

In the two regroup orbitals, $H_{\alpha_{1}}=H_{\alpha_{2}}$, so

$$
\operatorname{det}(1+B(\beta, 0))=\prod_{i=1}^{2} \operatorname{det}\left(1+B_{\alpha_{i}}(\beta, 0)\right)=\left|\operatorname{det}\left(\mathbf{1}+B_{\alpha_{1}}(\beta, 0)\right)\right|^{2}
$$

So our designer model is free of sign problem.

Accept Ratio

We have known that

$$
\begin{aligned}
\omega_{\mathcal{C}} & =\phi(\mathcal{C}) \operatorname{det}(\mathbf{1}+\mathbf{B}(\beta, \tau) \mathbf{B}(\tau, 0)) \\
& =\phi(\mathcal{C}) \operatorname{det}(\mathbf{G}(0,0))^{-1}
\end{aligned}
$$

After fliping a spin, the accept ratio(ratio of weight) is

$$
\begin{equation*}
\mathcal{R}=\frac{\mathcal{W}_{C^{\prime}}^{\mathcal{S}} \operatorname{det}\left(\mathbf{1}+B_{C^{\prime}}(\beta, 0)\right)}{\mathcal{W}_{\mathcal{C}}^{\mathcal{S}} \operatorname{det}\left(\mathbf{1}+B_{\mathcal{C}}(\beta, 0)\right)}=\frac{\mathcal{W}_{\mathcal{C}^{\prime}}^{\mathcal{S}}}{\mathcal{W}_{\mathcal{C}}^{\mathcal{S}}} \mathcal{R}_{f} \tag{19}
\end{equation*}
$$

And

$$
\begin{align*}
\mathcal{R}_{f} & =\frac{\operatorname{det}\left(\mathbf{1}+B_{C}^{\prime}(\beta, 0)\right)}{\operatorname{det}\left(1+B_{C}(\beta, 0)\right)} \\
& =\frac{\operatorname{det}\left(\mathbf{1}+B_{C}(\beta, \tau)(1+\Delta) B_{C}(\tau, 0)\right)}{\operatorname{det}\left(1+B_{C}(\beta, 0)\right)} \tag{20}\\
& =\operatorname{det}\left[\mathbf{1}+\Delta\left(\mathbf{1}-\left(\mathbf{1}+B_{C}(\tau, 0) B_{C}(\beta, \tau)\right)^{-1}\right)\right] \\
& =\operatorname{det}\left[\mathbf{1}+\Delta\left(\mathbf{1}-G_{\mathcal{C}}(\tau, \tau)\right)\right]
\end{align*}
$$

Update Green Function

$$
\begin{align*}
& G_{\mathcal{C}^{\prime}}(\tau, \tau)= {\left[\mathbf{1}+(\mathbf{1}+\boldsymbol{\Delta}) B_{\mathcal{C}}(\tau, 0) B_{\mathcal{C}}(\beta, \tau)\right]^{-1} } \\
&= {\left[\mathbf{1}+B_{\mathcal{C}}(\tau, 0) B_{\mathcal{C}}(\beta, \tau)\right]^{-1} \times } \\
& {\left[\left(\mathbf{1}+(\mathbf{1}+\Delta) B_{\mathcal{C}}(\tau, 0) B_{\mathcal{C}}(\beta, \tau)\right)\left(\left(\mathbf{1}+B_{\mathcal{C}}(\tau, 0) B_{\mathcal{C}}(\beta, \tau)\right)^{-1}\right)\right]^{-1} } \tag{21}\\
& \text { as } G_{\mathcal{C}}(\tau, \tau)=\left[\mathbf{1}+B_{\mathcal{C}}(\tau, 0) B_{\mathcal{C}}(\beta, \tau)\right]^{-1}, \text { we denote }
\end{align*}
$$

$$
\begin{align*}
A_{\mathcal{C}} & \equiv B_{\mathcal{C}}(\tau, 0) B_{\mathcal{C}}(\beta, \tau) \equiv G_{\mathcal{C}}^{-1}-\mathbf{1} \\
G_{\mathcal{C}^{\prime}}(\tau, \tau) & =G_{\mathcal{C}}\left[\left(\mathbf{1}+(\mathbf{1}+\Delta) A_{\mathcal{C}}\right) G_{\mathcal{C}}\right]^{-1} \\
& =G_{\mathcal{C}}\left[\left(\mathbf{1}+(\mathbf{1}+\Delta)\left(G_{\mathcal{C}}^{-1}-\mathbf{1}\right)\right) G_{\mathcal{C}}\right]^{-1} \tag{22}\\
& =G_{\mathcal{C}}\left[\mathbf{1}+\Delta\left(\mathbf{1}-G_{\mathcal{C}}\right)\right]^{-1}
\end{align*}
$$

Update Green Function

Using the Sherman-Morrison formula

$$
\begin{equation*}
(\mathbf{I}+\mathbf{U V})^{-1}=\mathbf{I}-\mathbf{U}\left(\mathbf{I}_{k}+\mathbf{V} \mathbf{U}\right)^{-1} \mathbf{V} \tag{23}
\end{equation*}
$$

we have that

$$
\begin{gather*}
\mathcal{R}_{f}=1+\Delta_{i i}\left(1-G_{i i}^{c}\right) \tag{24}\\
G_{c^{\prime}}(\tau, \tau)=G_{c}(\tau, \tau)+\alpha_{i} G_{\mathcal{C}}(:, i)\left(G_{\mathcal{C}}(i,:)-\mathbf{e}_{i}\right)
\end{gather*}
$$

where

$$
\begin{gathered}
\alpha_{i}=\Delta_{i i} / \mathcal{R}_{f} \\
O\left(N^{3}\right) \rightarrow O\left(N^{2}\right)
\end{gathered}
$$

Condition Numbers

Condition number of a matrix A is

$$
\begin{equation*}
\kappa(A)=\left\|A^{-1}\right\|\|A\| \tag{26}
\end{equation*}
$$

where $\|\cdot\|$ is norm of a matrix.
If condition number is very large, the results may be untrusted. For example

$$
\begin{aligned}
& {\left[\begin{array}{cc}
5 & 7 \\
7 & 10
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{c}
0.7 \\
1
\end{array}\right]} \\
& {\left[\begin{array}{cc}
5 & 7 \\
7 & 10
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{l}
0.69 \\
1.01
\end{array}\right]}
\end{aligned}
$$

Solutions are

$$
\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{c}
0 \\
0.1
\end{array}\right] \quad \text { and } \quad\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{c}
-0.17 \\
0.22
\end{array}\right]
$$

Numerical Stabilization

The Green function propagating process

$$
\begin{equation*}
\mathbf{G}^{\sigma}(\tau+1, \tau+1)=\mathbf{B}^{\sigma}(\tau+1, \tau) \mathbf{G}^{\sigma}(\tau, \tau) \mathbf{B}^{\sigma}(\tau+1, \tau)^{-1} \tag{27}
\end{equation*}
$$

will accumulate numerical errors. We need to do numerical stabilization after several steps of propagating.

Numerical Stabilization

$$
\begin{aligned}
& B\left((n+1) \tau_{w}, 0\right)=B\left((n+1) \tau_{w}, n \tau_{w}\right) B\left(n \tau_{w}, 0\right) \\
& =B\left((n+1) \tau_{w}, n \tau_{w}\right) U_{n} \underbrace{\left[\begin{array}{llll}
\mathrm{X} & & & \\
& \mathrm{X} & & \\
& & \mathrm{X} & \\
& & & \mathrm{x}
\end{array}\right]}_{D_{n}} V_{n} \\
& =\underbrace{\left[\begin{array}{llll}
\mathrm{X} & \mathrm{X} & \mathrm{X} & \mathrm{x} \\
\mathrm{X} & \mathrm{X} & \mathrm{X} & \mathrm{x} \\
\mathrm{X} & \mathrm{X} & \mathrm{X} & \mathrm{x} \\
\mathrm{X} & \mathrm{X} & \mathrm{X} & \mathrm{x}
\end{array}\right]}_{B\left((n+1) \tau_{w}, n \tau_{w}\right) U_{n} D_{n}} V_{n}=U_{n+1} \underbrace{\left[\begin{array}{llll}
\mathrm{X} & & & \\
& \mathrm{X} & & \\
& & \mathrm{X} & \\
& & & \mathrm{x}
\end{array}\right]}_{D_{n+1}} V^{\prime} V_{n} \\
& =U_{n+1} D_{n+1} V_{n+1}
\end{aligned}
$$

Numerical Stabilization

We recalculate the equal time Green function after several steps of propagating using following equation.

$$
\begin{align*}
\mathbf{G}(\tau, \tau) & =[\mathbf{1}+\mathbf{B}(\tau, 0) \mathbf{B}(\beta, \tau)]^{-1} \\
& =\left[\mathbf{1}+\mathbf{U}_{R} \mathbf{D}_{R} \mathbf{V}_{R} \mathbf{V}_{L} \mathbf{D}_{L} \mathbf{U}_{L}\right]^{-1} \\
& =\mathbf{U}_{L}^{-1}\left[\left(\mathbf{U}_{L} \mathbf{U}_{R}\right)^{-1}+\mathbf{D}_{R}\left(\mathbf{V}_{R} \mathbf{V}_{L}\right) \mathbf{D}_{L}\right]^{-1} \mathbf{U}_{R}^{-1} \\
& =\mathbf{U}_{L}^{-1}\left[\left(\mathbf{U}_{L} \mathbf{U}_{R}\right)^{-1}+\mathbf{D}_{R}^{\max } \mathbf{D}_{R}^{\min }\left(\mathbf{V}_{R} \mathbf{V}_{L}\right) \mathbf{D}_{L}^{\min } \mathbf{D}_{L}^{\max }\right]^{-1} \mathbf{U}_{R}^{-1} \\
& =\mathbf{U}_{L}^{-1}\left(\mathbf{D}_{L}^{\max }\right)^{-1}\left[\left(\mathbf{D}_{R}^{\max }\right)^{-1}\left(\mathbf{U}_{L} \mathbf{U}_{R}\right)^{-1}\left(\mathbf{D}_{L}^{\max }\right)^{-1}+\mathbf{D}_{R}^{\min } \mathbf{V}_{R} \mathbf{V}_{L} \mathbf{D}_{L}^{\min }\right]^{-1}\left(\mathbf{D}_{R}^{\max }\right)^{-1} \mathbf{U}_{R}^{-1} \tag{28}
\end{align*}
$$

Operator and Measurment

The ensemble average of physical observable:

$$
\begin{equation*}
\langle\hat{O}\rangle=\frac{\operatorname{Tr}\left\{e^{-\beta \hat{H}} \hat{O}\right\}}{\operatorname{Tr}\left\{e^{-\beta \hat{H}}\right\}}=\sum_{c} \mathcal{P}_{c}\langle\hat{O}\rangle_{c}+O\left(\Delta \tau^{2}\right) \tag{29}
\end{equation*}
$$

where

$$
\begin{align*}
& \mathcal{P}_{\mathcal{C}}=\frac{\mathcal{W}_{\mathcal{C}}^{\mathcal{S}} \operatorname{det}[\mathbf{1}+B(\beta, 0)]}{\sum_{\mathcal{C}} \mathcal{W}_{\mathcal{C}}^{\mathcal{S}} \operatorname{det}[\mathbf{1}+B(\beta, 0)]} \tag{30}\\
& \langle\hat{O}\rangle_{\mathcal{C}}=\frac{\operatorname{Tr}\{\hat{U}(\beta, \tau) \hat{O} \hat{U}(\tau, 0)\}}{\operatorname{Tr}\{\hat{U}(\beta, 0)\}}
\end{align*}
$$

Operator and Measurment

Equal time Green's function:

$$
\begin{equation*}
\left(G_{i j}\right)_{\mathcal{C}}=\left\langle\hat{c}_{i} \hat{c}_{j}^{\dagger}\right\rangle_{\mathcal{C}}=(\mathbf{1}+B(\tau, 0) B(\beta, \tau))_{i j}^{-1} \tag{31}
\end{equation*}
$$

When $\tau_{1}>\tau_{2}$, we can obtain:

$$
\begin{align*}
\left(G_{i j}\left(\tau_{1}, \tau_{2}\right)\right)_{\mathcal{C}} & =\left\langle\hat{c}_{i}\left(\tau_{1}\right) \hat{c}_{j}^{\dagger}\left(\tau_{2}\right)\right\rangle_{C} \\
& =\frac{\operatorname{Tr}\left\{\hat{U}\left(\beta, \tau_{1}\right) \hat{c}_{i} \hat{U}\left(\tau_{1}, \tau_{2}\right) \hat{c}_{j}^{\dagger} \hat{U}\left(\tau_{2}, 0\right)\right\}}{\operatorname{Tr}\{\hat{U}(\beta, 0)\}} \tag{32}\\
& =\frac{\operatorname{Tr}\left\{\hat{U}\left(\beta, \tau_{2}\right) \hat{U}^{-1}\left(\tau_{1}, \tau_{2}\right) \hat{c}_{i} \hat{U}\left(\tau_{1}, \tau_{2}\right) \hat{c}_{j}^{\dagger} \hat{U}\left(\tau_{2}, 0\right)\right\}}{\operatorname{Tr}\{\hat{U}(\beta, 0)\}} \\
& =\left[B\left(\tau_{1}, \tau_{2}\right) G_{\mathcal{C}}\left(\tau_{2}, \tau_{2}\right)\right]_{i j}
\end{align*}
$$

Kinetic Energy

The calculation parameters is $L=4, \beta=4$

Double Occupancy

We can define double occupancy $D=\left\langle n_{i \uparrow} n_{i \downarrow}\right\rangle$ as the order parameter for Mott transition. Here we show the results with parameters $L=4, \beta=4$ and U varying from 0.0 t to 8.0 t.

$S(\pi, \pi)$

We measure the z-component antiferromagnetic structure factor $S(\pi, \pi)$ which is defined as

$$
S(\mathbf{Q})=\frac{1}{L^{2}} \sum_{i j} e^{-i \mathbf{Q} \cdot\left(\mathbf{r}_{i}-\mathbf{r}_{j}\right)}\left\langle\hat{s}_{i}^{Z} \hat{s}_{j}^{Z}\right\rangle
$$

Thanks

