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Spectral function

m Real-time correlation
G(t) = (0(1)0(0)) = ("' OTe 1 0) (1)

m Fourier transformation = spectral function
S(w) = /dteith(t)
Ly e / dt{nle ¥t Oe " m) (m|O]n)
=z 2o [ ol
_ % > e B [(m|On)[*(w — Em + En)
mn

= An excitation state corresponds to a non-zero point in S(w)
— energy spectrum



stic Analytical Continuation — Principle, Algorithm & Application
10d

L Preliminaries

Accessible numerical methods

Exact diagonalization

m Most reliable;
m Only for small systems.



c Analytical Continuation — Principle, Algorithm & Application
1

L Preliminaries

Accessible numerical methods

Exact diagonalization
m Most reliable;
m Only for small systems.
DMRG, MPS, tensor network
m No ‘sign problem’;
m Only for 1D & small 2D systems.
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Accessible numerical methods

Exact diagonalization

m Most reliable;
m Only for small systems.

DMRG, MPS, tensor network

m No ‘sign problem’;

m Only for 1D & small 2D systems.
Quantum Monte Carlo

m Formulated in imaginary time;
m No direct access to real time properties.

G(t) = (tOTe T O) (3)

= QMC — SAC
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L Preliminaries

Ingredients from QMC

m Imaginary time correlation
G(r = it) = (O1(1)0(0)) = (T OTe T O) (4)

m Connexion to spectral function

Glt) = / dwe #S(w)  S(w) = / dte G (1)
(5)
G(t)= /dwe_‘”S(w)

m Inverse Laplacian transformation isn’t numerically stable
m ‘Analytical continuation’ : G(7 = it) on the imaginary axis
— G(t) on the real axis
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Parametrization : Convert into fitting problem

m Functional form

S(w) = A1d(w —wy) + Aze_(W—V)z/?U2 (6)

m Easy to control ; biased by the form?!
m Sandvik €& Singh, Phys. Rev. Lett. 86, 528 (2001)

m Sum of -functions - S(w) = >, Aid(w — w;

)
....nlll””” Hmlln.... H

Equal inteval Equal weight

m Constraints
m Positivity, normalization
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m Carry out explicitly the integral
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L Preliminaries

Reproduce G(7) from fitting

S(w) = Z Aib(w — w;) (7)

m Carry out explicitly the integral

B 1 e Wit 4 e—wi(ﬁ—’r)
G(r) =D Ao (8)
i

m Write in terms of kernals

- 1e W &+ e—w(B-T)
G(r) = ZAz’K(T, wi), K(r,w)= 7 1yowP (9)

The kernal for every 7 and w is stored in advance.
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L Preliminaries

D)

Fitting goodness — x*

m Compare the measured value G(r) = >, G*(7;) /Ny and fit
value G(7;)

m Independent variables

ij
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Rotation to eigenbasis

Cij ~{(Gi = Gi)(G; = Gy)) (13)
In practice, we diagonalize the Green’s functions at first
€adop = TCTT
G, = TaiG(Ti)
> (14)
1 . _
2 _ T2 e Y
X = Z —(G,-GY)
Gl =Y AK (w)
i (15)

K(w) = To;K(rj,w)
J
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m Transform into G(7)
m Add Gaussian noise
m Perform the process



c Analytical Continuation — Principle, Algorithm & Application

1
L Historic Methods

Direct fitting

T

m Test on methods .
m Synthesize S(w) — Synthetic
m Transform into G(7)
m Add Gaussian noise

m Perform the process

2 1
—closetoy .

m Annealing process to
minimize y?
m Overfitting — Fitting to the
0
0

error bar o ©
Hui Shao’s slide on BSSQM at UCAS, 2019




astic Analytical Continuation — Principle, Algorithm & Application

L Historic Methods

Maximum entropy method

m Bayes’ theorem
P(S(w)|G(T))P(G(1)) = P(G(7)|S(w))P(S(w)) (16)



astic Analytical Continuation — Principle, Algorithm & Application

L Historic Methods

Maximum entropy method

m Bayes’ theorem
P(S(w)|G(T))P(G(1)) = P(G(7)|S(w))P(S(w)) (16)

P(S(w)|G(7)) is what we want to maximize.
P

m P(S
m P(G(7)|S(w)): likelihood function ~ exp(—x2/2)



Jontinuation — Principle, Algorithm & Application

L Historic Methods

Maximum entropy method

m Bayes’ theorem
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L Historic Methods

Maximum entropy method

m Bayes’ theorem
P(S(w)|G(T))P(G(1)) = P(G(7)|S(w))P(S(w)) (16)

m P(S(w)|G(7)) is what we want to maximize.
m P(G(7)|S(w)): likelihood function ~ exp(—x2/2)

P(S(w)|G(7)) ~ P(G(7)]S(w))P(S(w)) (17)
m MEM assumption : particular choice of P(S(w))
P(S(w)) ~ exp(aS) (18)

m Information theory entropy
S(w)
=—/d 1
S / wS(w)log D(w)
m D(w) ‘default model’ : smoothest function consistent with prior
knowledge

Silver, Sivia € Gubernatis, Phys. Rev. B 41, 2380 (1990)

(19)
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m Now we want to maximize

aS — 2

(20)
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m Now we want to maximize
as — x? (20)

m At the same time evaluate the goodness of fitting and
compare with a given spectral

m S has a smoothing effect.
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L Historic Methods

Maximum entropy method

m Now we want to maximize
as — x? (20)

m At the same time evaluate the goodness of fitting and
compare with a given spectral

S has a smoothing effect.

Different variants of the method use different criteria to
determine «
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Stochastic analytical continuation

Not impose the entropy explicitly as a prior
but generate implicitly by Monte Carlo sampling

m Average all spectra S(w) with different weight so that
(S(w)) is smooth
m Setting the weight of each

e (-20) -

O is an analogy to thermodynamic temperature
m Monte Carlo sampling of w; and A; of J-functions

S(w) = Z Aib(w — w;) (22)

m MaxEnt method can be regarded as a mean field of SAC.
Shao, Qin, Capponi et al., Phys. Rev. Lett. 7, 041072 (2017)
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L-SAC Method

Determining ©

m Balance between detail and smoothness
m Fix © =1 : Usually good but deteriorates for large IV,
m Syljuasen, Phys. Rev. B 78, 174429 (2008)



Determining ©

m Balance between detail and smoothness

m Fix © =1 : Usually good but deteriorates for large IV,
m Syljuasen, Phys. Rev. B 78, 174429 (2008)

m Statistically motivated method:
raise the x? by a standard
deviation with respect to the
minimum

XA(0) = Xihin T a0y (23)
Xoin ~ Ney 042 ~ /2N, (24)

m Sandvik, Phys. Rev. E 94,
063308 (2016)

011 i 10
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C Method

Determining ©

m Use simulated annealing to find the lowest 2

m Raise © to meet the criteria

10 2
8- N - gytluhetic
o <X2> = Xfmn +a Xfmm a=2 1 — adapeted 6
e
£ 2 :
x 72
47 |
27 |
L L
051 1 0 0 >

Shao, Qin, Capponi et al., Phys. Rev. Lett. 7, 041072 (2017)
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LA’-\L,lt,liug; Features

Sharp peaks

m Sharp peak feature — Spinon mode in spin-1/2 Heisenberg

15F 3200 4
S 1o} 1
5
5F il
%45 2.5 3
m Unrestricted result: peak m Restriction 1:
suppressed and moved Cut-off frequency

Sandvik, Phys. Rev. E 94, 063308 (2016)
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Sharp peaks

m Restriction 1: Cut-off frequency

m Determine wiys by minimizing y?

=)

Sandvik, Phys. Rev. E 94, 063308 (2016)
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L:—\L,l(,ling Features

Sharp peaks

m Restriction 2: Monotonically increasing distances <
monotonically decreasing S(w)

S(w) ~ Afbw (25)
30
20
— Bethe ansatz
HHHHHHHHHH 2 — SAC - unrestricted
1 — SAC - restricted
0 i 2 3 4

Sandvik, Phys. Rev. E 94, 063308 (2016)
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Sharp peaks

m Restriction 3: Fix the initial inteval dw|q,

S(w) ~ A/dw (26)

“HHHHHHH ‘ ‘ ‘ ‘ )

Sandvik, Phys. Rev. E 94, 063308 (2016)
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LA’-\L,lt,liug; Features

Delta peak

m Magnon mode : A discrete peak followed by a continue
spectrum

m Restriction : Add a predominate § peak at the inferior limit

0.2F

JUMINI] ] | I

Shao, Qin, Capponi et al., Phys. Rev. Lett. 7, 041072 (2017)

0.6F

0.4

S(w)
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LA’-\L,lt,liug Features

Delta peak

m Restriction : Add a predominate § peak at the inferior limit

m Determine the height of the predominant peak by
minimizing x2

0 I I I I I
0 0.1 0.2 0.3 0.4 0.5
a

Shao, Qin, Capponi et al., Phys. Rev. Lett. 7, 041072 (2017)
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m Domain Wall Excitations of Frustrated Ising Magnets
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Lh})e( trum of Heisenberg Antiferromagnets

Dynamic spin structure factor

= / dte“'G(t), G(t) = (OT(t)O0(0)) (27)

Choose
O = Sa _ Sa —iq-r; 28
- = > (25)

NZ (8i(7)S5(0)) cosq - (r; — ry) (29)
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Lh})e( trum of Heisenberg Antiferromagnets

Dynamic spin structure factor

= / dte“'G(t), G(t) = (OT(t)O0(0)) (27)

Choose
O = Sa _ Sa —iq-r; 28
- = > (25)

NZ (8i(7)S5(0)) cosq - (r; — ry) (29)
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trum of Heisenberg Antiferromagnets

Antiferromagnetic Heisenberg model

|
i 06
15 i
305
&
~ g oa
3 o 03
S 10 1
E @02
q
E 0.1
% 0
o
05 2 3 4 5 6
0.0 =
2 3 4 5 6
wl

Sandvik & Singh, Phys. Rev. Lett. 86, 528 (2001)
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LSpe(‘trum of Heisenberg Antiferromagnets

SAC spectrum

0
/2,m/2)  (m0) (/2,m/2)  (0,0) (,0)
Shao, Qin, Capponi et al., Phys. Rev. Lett. 7, 041072 (2017)

(m,7r)
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Predominant feature

1.0
’Q
7 Sl
1 + T T 1 05F &1 T T 1 1
« SAC (L=48)
o Experiment
0 — Linear SWT
@y, g @2 @ (0 &) o A 2
/?/2) Z 2) /779) /) Z ’?‘/3/?/2)’?,‘0) ’?;,?) /?73/?/2) /?'0)

Shao, Qin, Capponi et al., Phys. Rev. Lett. 7, 041072 (2017)
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Domain Wall Excitations of Frustrated Ising Magnets

Frustrated Ising Model

H=JY SiSi+J > SiSi—h) S (31)
(i) (i) i

clock domain wall induced incommensurate stripe
T o [ S B av. o v o O \® -0 0 0,700 e 0 0 0/ 09 0 0 0 0 00
L S B.4 ol e o Lo S S o S o ]
.| o8 * o 0 00 00
LS54 o1 e * Lo S S S S o ]
.. *| e e e 0 000
LS4 L SR * Lo O S o o o ]
eole | eole o o o o & 0 0
0 A J/T
| clock stripe
0

A T/
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LDomain ‘Wall Excitations of Frustrated Ising Magnets

citation spectrum

Figure: J'=0.04, p=1/2, h=10.3
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L Domain Wall Excitations of Frustrated Ising Magnets

Low frequency spectrum along high-symmetry lines

. 0.5
qu/m q,/m

Figure: z-axis, 'K M Line Figure: y-axis, I M Line
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Programme Structure & Instruction

Code from Hui Shao on BSSQM
http://ddl.escience.cn/f/SPoD
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L1:’rog;ramme Structure & Instruction

tres.f90

dealdata/tres.f90: To process the data of every bin correlation
from QMC into input of SAC.

m Calculate the mean G(7;); calculate and diagonalize
covariance matrix.

m Input tgrid.dat: imaginary time grid 7;
m Input cor.dat: G®(r;), N x N, data from QMC

measurement

m Input tres.dat: parameters of processing

ng Number of ¢g-points (set 1)
beta Inverse temperature of QMC
qq Assign which ¢ to use (set 0)
nb Number of bins (set 0 =All)
rb Rebinning factor

sk Skipping some of the bins

nbt Number of bootstrap samples
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Programme Structure & Instruction

tres.f90

dealdata/tres.f90: To process the data of every bin correlation
from QMC into input of SAC.

Output sq.dat: the average of G(0) and errorbar

Output tg.dat: the averages of G(7;) and errorbars

Output q001.dat: the eigenvalues and eigenvectors of
covariance matrix

m 7;, G(1;), 0G(7;), eigenvalue of C;;

m Eigenvectors of C;;

Command: ifort tres.f90 dsyev.f -o ***.out
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L1:’rog;ramme Structure & Instruction

sac.f90

sac/sac.f90: the main SAC programme

m Input ¢.4n: renamed from dealdata/q001.dat

m Input samp.in: parameters of SAC.

nw: number of §’s in parametrization;

th: the initial temperature

da: the minimum inteval in histogram

dw: the minimum inteval in gridding

wl,w2: the lower/upper bound of the
istps,mspts: the MCS’s used in initialization and
measurement
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L1:’rog;ramme Structure & Instruction

sac.f90

sac/sac.f90: the main SAC programme
m Output sw.dat: accumulated spectral function

m Output log.log: the log file while the programme is running

m index, index, O, X2, (x?), two kinds of update success
rates and window widths
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L Code Overview

Code Structure

m Read input & initializations
m Initialize ran 503-549
m Read 7;, G(1;) & C;; 437471
m Initialize spectrum 397-416
m Initialize kernal 418-434
m Decide temperature & equiliberate
m Annealing process to determine © 99-154 (if O;n;; > 1)
m Equiliberate again
m Sample & measure

m Collect spectrum while sampling
m Write spectrum 244-263
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L Code Overview

Initializations

Read parameters 70-74

Initialize random number 503-549
Clear files initfiles 474-484

Read data readsqt 437—471

m Transform G(7;) into the eigenbasis of covaraince matrix.

m Calculate the average frequency
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L Code Overview

Initializations

Initialize spectrum initspec 397-416
m Convert all the frequencies into the unit of grid inteval dw
m Set the amplitudes of the §’s to be the same.
m Set the initial positions to be the same at the average
frequency (if not too low)
m Set the intial window width dd to be 1/10 of the average
frequency
Initialize kernal inikern 418-435

- le ™ e w(~7)
G(r) =D AK(rw), K(rw)=———— 3

(32)

ar — Z UajG(1j) = Y AiKa(wi), Ko = Z Uaj K (1), wi)
: ’ (33)



ic Analytical Continuation — Principle, Algorithm & Application
ode

L Code Overview

Updating process

Updating single 6 dmovel(dd,ar) 299-336
m Update nw times, each time take a random single peak
m Find a random dw within the window, w + w + dw
m Check the updated value is allowed
m Calculate the updated Gy ’s and x?’s chi2 385-395
m Accept the update according to probability
p = max(1, e_(XQ_XIQ)/%))
m Calculate the success rate
Updating § pairs dmove2(dd,ar) 338-383
m Update nw/2 times, each time take two random peaks

m Find a random dw within the window,
w1 4 w1 + 0w, ws + wy — dw
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L Code Overview

Sampling and equiliberate process

Sampling sample(stps,sp,del) 183-205
m stps MCS’s, each step two kinds of update is carried out
once.

m Each ten steps the Green’s functions are re-calculated to
avoid accumulation of errors. calcxt 280-297

m Current spectrum is calculated if needed collectspec
225-241

m Average x? is measured
Equiliberate equiliberate(ia,stp,nbin,del) 156—180
m nbin bins, each bin sample stp MCS’s.
m Adjust window width so that the success rates ~ 0.5.

m Measure the mean and deviation of x? expvalues 207-223
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L Code Overview

Determine ©

If Ot > 1, fiztheta 101-154
m Annealing process

m Each time decrease the temperature by 1/10, until (x2) is
close to its minimum value
m Equiliberate

m Save the O, (x?), window widths and current spectrum of
all the #’'s

m Choose the set of data whose (x?) = X2, + 21/x2,;,, read
the saved window widths and spectrum



ic Analytical Continuation — Principle, Algorithm & Application

L Conclusion

Conclusion

SAC is a numerical method to carry out anti-Laplacian
transformation to obtain S(w) out of G(7), which is a
numerically unstable problem.

We parametrize S(w) into a series of ¢ function and
perform a fitting process and evaluate the goodness of the
fitting by a parameter 2.

To avoid overfitting we sample over all possible S(w)’s and
average with the weight of each exp(—x?/20)

Features can be added such as a predominant § peak or a
sharp peak.

Basic code is given. Its structure and instruction are
overviewed.

Applications such as spectra of Heisenberg and frustrated
Ising magnets are introduced.
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