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Method

Preliminaries

Spectral function

Real-time correlation

G(t) = 〈O†(t)O(0)〉 = 〈eiHtO†e−iHtO〉 (1)

Fourier transformation ⇒ spectral function

S(ω) =

∫
dteiωtG(t)

=
1

Z
∑

mn

e−βEn

∫
dt〈n|eiHtO†e−iHt|m〉〈m|O|n〉

=
1

Z
∑

mn

e−βEn

∫
dtei(ω−Em+En)t|〈m|O|n〉|2

=
1

Z
∑

mn

e−βEn |〈m|O|n〉|2δ(ω − Em + En)

(2)

An excitation state corresponds to a non-zero point in S(ω)
– energy spectrum
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Method

Preliminaries

Accessible numerical methods

1 Exact diagonalization

Most reliable;
Only for small systems.

2 DMRG, MPS, tensor network

No ‘sign problem’;
Only for 1D & small 2D systems.

3 Quantum Monte Carlo

Formulated in imaginary time;
No direct access to real time properties.

G(t) = 〈eiHtO†e−iHtO〉 (3)

QMC → SAC
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Method

Preliminaries

Ingredients from QMC

Imaginary time correlation

G(τ = it) = 〈O†(τ)O(0)〉 = 〈eHτO†e−HτO〉 (4)

Connexion to spectral function

G(t) =

∫
dωe−iωtS(ω) S(ω) =

∫
dteiωtG(t)

G(τ) =

∫
dωe−ωτS(ω)

(5)

Inverse Laplacian transformation isn’t numerically stable

‘Analytical continuation’ : G(τ = it) on the imaginary axis
−→ G(t) on the real axis
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Method

Preliminaries

Parametrization : Convert into fitting problem

Functional form

S(ω) = A1δ(ω − ωq) +A2e−(ω−ν)2/2σ2
(6)

Easy to control ; biased by the form1

Sandvik & Singh, Phys. Rev. Lett. 86, 528 (2001)

Sum of δ-functions – S(ω) =
∑

iAiδ(ω − ωi)

Equal inteval Equal weight

Constraints

Positivity, normalization
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Method

Preliminaries

Reproduce G(τ) from fitting

S(ω) =
∑

i

Aiδ(ω − ωi) (7)

Carry out explicitly the integral

G̃(τ) =
∑

i

Ai
1

π

e−ωiτ + e−ωi(β−τ)

1 + e−ωiβ
(8)

Write in terms of kernals

G̃(τ) =
∑

i

AiK(τ, ωi), K(τ, ω) =
1

π

e−ωτ + e−ω(β−τ)

1 + e−ωβ
(9)

The kernal for every τ and ω is stored in advance.
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Method

Preliminaries

Fitting goodness – χ2

Compare the measured value Ḡ(τi) =
∑

bG
b(τi)/Nb and fit

value G̃(τi)

Independent variables

χ2 =
∑

i

1

σ2
i

(Ḡ(τi)− G̃(τi))
2 (10)

Correlated variables

χ2 =
∑

ij

(C−1)ij(Ḡ(τi)− G̃(τi))(Ḡ(τj)− G̃(τj)) (11)

Cij =
1

Nb(Nb − 1)

∑

b

(Gb(τi)− Ḡ(τi))(G
b(τj)− Ḡ(τj)) (12)
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Rotation to eigenbasis

Cij ∼ 〈(Gi − Ḡi)(Gj − Ḡj)〉 (13)

In practice, we diagonalize the Green’s functions at first

εαδαβ = TCT†

G′α =
∑

i

TαiG(τi)

χ2 =
∑

α

1

εα
(G̃′α − Ḡ′α)2

(14)

G̃′α =
∑

i

AiK
′
α(ωi)

K ′α(ω) =
∑

j

TαjK(τj , ω)
(15)
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Historic Methods

Direct fitting

Test on methods

Synthesize S(ω)
Transform into G(τ)
Add Gaussian noise
Perform the process

Annealing process to
minimize χ2

Overfitting – Fitting to the
error bar 00 44 88 1212

ωω
00

11

22

S
(

S
(ωω
))

SyntheticSynthetic

close to χ
2

min

Hui Shao’s slide on BSSQM at UCAS, 2019
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Method

Historic Methods

Maximum entropy method

Bayes’ theorem

P(S(ω)|G(τ))P(G(τ)) = P(G(τ)|S(ω))P(S(ω)) (16)

P(S(ω)|G(τ)) is what we want to maximize.
P(G(τ)|S(ω)): likelihood function ∼ exp(−χ2/2)

P(S(ω)|G(τ)) ∼ P(G(τ)|S(ω))P(S(ω)) (17)

MEM assumption : particular choice of P(S(ω))

P(S(ω)) ∼ exp(αS) (18)

Information theory entropy

S = −
∫

dωS(ω) log
S(ω)

D(ω)
(19)

D(ω) ‘default model’ : smoothest function consistent with prior
knowledge

Silver, Sivia & Gubernatis, Phys. Rev. B 41, 2380 (1990)
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Method

Historic Methods

Maximum entropy method

Now we want to maximize

αS − χ2 (20)

At the same time evaluate the goodness of fitting and
compare with a given spectral

S has a smoothing effect.

Different variants of the method use different criteria to
determine α
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Method

SAC Method

Stochastic analytical continuation

Not impose the entropy explicitly as a prior
but generate implicitly by Monte Carlo sampling

Average all spectra S(ω) with different weight so that
〈S(ω)〉 is smooth
Setting the weight of each

W ∼ exp

(
− χ

2

2Θ

)
(21)

Θ is an analogy to thermodynamic temperature
Monte Carlo sampling of ωi and Ai of δ-functions

S(ω) =
∑

i

Aiδ(ω − ωi) (22)

MaxEnt method can be regarded as a mean field of SAC.

Shao, Qin, Capponi et al., Phys. Rev. Lett. 7, 041072 (2017)
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Method

SAC Method

Determining Θ

Balance between detail and smoothness

Fix Θ = 1 : Usually good but deteriorates for large Nω

Syljuasen, Phys. Rev. B 78, 174429 (2008)

Statistically motivated method:
raise the χ2 by a standard
deviation with respect to the
minimum

χ2(θ) = χ2
min + aσχ2 (23)

χ2
min ∼ Nτ , σχ2 ∼

√
2Nτ (24)

Sandvik, Phys. Rev. E 94,
063308 (2016)

0.1 1 10
θ

0

2

4

6

8

10

χ2
/N
τ

h�2i = �2
min + a

q
�2

min, aa = 2
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Method

SAC Method

Determining Θ

Use simulated annealing to find the lowest χ2

Raise Θ to meet the criteria

0.1 1 10
θ

0

2

4

6

8

10

χ2
/N
τ

h�2i = �2
min + a

q
�2

min, aa = 2

0 4 8 12
ω

0

1

2

S
(ω
)

Synthetic
θ=1
adapeted θ

Shao, Qin, Capponi et al., Phys. Rev. Lett. 7, 041072 (2017)
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Method

Adding Features

Sharp peaks

Sharp peak feature – Spinon mode in spin-1/2 Heisenberg

00.5 1 1.5 2 2.5 3

5

10

15

S(
q,

ω
)

 N = 400,...,3200
 N = 6400
 BA

Unrestricted result: peak
suppressed and moved

Restriction 1:
Cut-off frequency

Sandvik, Phys. Rev. E 94, 063308 (2016)
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Method

Adding Features

Sharp peaks

Restriction 1: Cut-off frequency

Determine ωinf by minimizing χ2
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Sandvik, Phys. Rev. E 94, 063308 (2016)
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Method

Adding Features

Sharp peaks

Restriction 2: Monotonically increasing distances ⇔
monotonically decreasing S(ω)

S(ω) ≈ A/δω (25)

1 2 3 4
ω

0

10

20

30

S(
ω
)

Bethe ansatz
SAC - unrestricted 
SAC - restricted

Sandvik, Phys. Rev. E 94, 063308 (2016)
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Method

Adding Features

Sharp peaks

Restriction 3: Fix the initial inteval δω|ωinf

S(ω) ≈ A/δω (26)

Sandvik, Phys. Rev. E 94, 063308 (2016)
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Method

Adding Features

Delta peak

Magnon mode : A discrete peak followed by a continue
spectrum

Restriction : Add a predominate δ peak at the inferior limit

0

0.2

0.4

0.6

S(
ω

)

0 1 2 3 4 5

Shao, Qin, Capponi et al., Phys. Rev. Lett. 7, 041072 (2017)
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Method

Adding Features

Delta peak

Restriction : Add a predominate δ peak at the inferior limit

Determine the height of the predominant peak by
minimizing χ2
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Shao, Qin, Capponi et al., Phys. Rev. Lett. 7, 041072 (2017)
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Spectrum of Heisenberg Antiferromagnets

Dynamic spin structure factor

S(ω) =

∫
dteiωtG(t), G(t) = 〈O†(t)O(0)〉 (27)

Choose

O → Sα(q) =
1√
N

∑

i

Sαi e−iq·ri (28)

G(τ) =
1

N

∑

ij

〈Sαi (τ)Sαj (0)〉 cosq · (ri − rj) (29)
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Spectrum of Heisenberg Antiferromagnets

Antiferromagnetic Heisenberg model

H = J
∑

〈ij〉

Si · Sj (30)
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Spectrum of Heisenberg Antiferromagnets

SAC spectrum

Shao, Qin, Capponi et al., Phys. Rev. Lett. 7, 041072 (2017)



Stochastic Analytical Continuation — Principle, Algorithm & Application

Application

Spectrum of Heisenberg Antiferromagnets

Predominant feature

Linear SWT
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Shao, Qin, Capponi et al., Phys. Rev. Lett. 7, 041072 (2017)
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Domain Wall Excitations of Frustrated Ising Magnets

Frustrated Ising Model

H = J
∑

〈ij〉

Szi S
z
j + J ′

∑

〈〈ij〉〉

Szi S
z
j − h

∑

i

Sxi (31)
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Domain Wall Excitations of Frustrated Ising Magnets

Excitation spectrum
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Domain Wall Excitations of Frustrated Ising Magnets

Low frequency spectrum along high-symmetry lines
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Programme Structure & Instruction

Code from Hui Shao on BSSQM
http://ddl.escience.cn/f/SPoD
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Programme Structure & Instruction

tres.f90

dealdata/tres.f90: To process the data of every bin correlation
from QMC into input of SAC.

Calculate the mean G(τi); calculate and diagonalize
covariance matrix.

Input tgrid.dat: imaginary time grid τi

Input cor.dat: Gb(τi), Nb ×Nτ data from QMC
measurement

Input tres.dat: parameters of processing

nq Number of q-points (set 1)
beta Inverse temperature of QMC
qq Assign which q to use (set 0)
nb Number of bins (set 0 =All)
rb Rebinning factor
sk Skipping some of the bins
nbt Number of bootstrap samples
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Programme Structure & Instruction

tres.f90

dealdata/tres.f90: To process the data of every bin correlation
from QMC into input of SAC.

Output sq.dat: the average of G(0) and errorbar

Output tq.dat: the averages of G(τi) and errorbars

Output q001.dat : the eigenvalues and eigenvectors of
covariance matrix

τi, G(τi), δG(τi), eigenvalue of Cij
Eigenvectors of Cij

Command: ifort tres.f90 dsyev.f -o ***.out
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Programme Structure & Instruction

sac.f90

sac/sac.f90: the main SAC programme

Input t.in: renamed from dealdata/q001.dat

Input samp.in: parameters of SAC.

nw: number of δ’s in parametrization;
th: the initial temperature
da: the minimum inteval in histogram
dw: the minimum inteval in gridding
w1,w2: the lower/upper bound of the
istps,mspts: the MCS’s used in initialization and
measurement
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Programme Structure & Instruction

sac.f90

sac/sac.f90: the main SAC programme

Output sw.dat: accumulated spectral function

Output log.log: the log file while the programme is running

index, index, Θ, χ2
min, 〈χ2〉, two kinds of update success

rates and window widths
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Code Structure

Read input & initializations

Initialize ran 503–549
Read τi, G(τi) & Cij 437–471
Initialize spectrum 397–416
Initialize kernal 418–434

Decide temperature & equiliberate

Annealing process to determine Θ 99–154 (if Θinit > 1)
Equiliberate again

Sample & measure

Collect spectrum while sampling
Write spectrum 244–263



Stochastic Analytical Continuation — Principle, Algorithm & Application

Code

Code Overview

Initializations

Read parameters 70–74
Initialize random number 503–549
Clear files initfiles 474–484
Read data readsqt 437–471

Transform G(τi) into the eigenbasis of covaraince matrix.

Calculate the average frequency
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Code Overview

Initializations

Initialize spectrum initspec 397–416

Convert all the frequencies into the unit of grid inteval dw

Set the amplitudes of the δ’s to be the same.

Set the initial positions to be the same at the average
frequency (if not too low)

Set the intial window width dd to be 1/10 of the average
frequency

Initialize kernal inikern 418–435

G̃(τ) =
∑

i

AiK(τ, ωi), K(τ, ωi) =
1

π

e−ωτ + e−ω(β−τ)

1 + e−ωβ
(32)

G′Fα =
∑

j

UαjG̃(τj) =
∑

AiKα(ωi), Kα =
∑

j

UαjK(τj , ωi)

(33)
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Updating process

Updating single δ dmove1(dd,ar) 299–336

Update nw times, each time take a random single peak

Find a random δω within the window, ω ← ω + δω

Check the updated value is allowed

Calculate the updated G̃α’s and χ2’s chi2 385–395

Accept the update according to probability
p = max(1, e−(χ2−χ′2)/2Θ)

Calculate the success rate

Updating δ pairs dmove2(dd,ar) 338–383

Update nw/2 times, each time take two random peaks

Find a random δω within the window,
ω1 ← ω1 + δω, ω2 ← ω2 − δω
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Sampling and equiliberate process

Sampling sample(stps,sp,del) 183–205

stps MCS’s, each step two kinds of update is carried out
once.

Each ten steps the Green’s functions are re-calculated to
avoid accumulation of errors. calcxt 280–297

Current spectrum is calculated if needed collectspec
225–241

Average χ2 is measured

Equiliberate equiliberate(ia,stp,nbin,del) 156–180

nbin bins, each bin sample stp MCS’s.

Adjust window width so that the success rates ∼ 0.5.

Measure the mean and deviation of χ2 expvalues 207–223
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Code Overview

Determine Θ

If Θinit > 1, fixtheta 101–154

Annealing process

Each time decrease the temperature by 1/10, until 〈χ2〉 is
close to its minimum value
Equiliberate
Save the Θ, 〈χ2〉, window widths and current spectrum of
all the θ′s

Choose the set of data whose 〈χ2〉 = χ2
min + 2

√
χ2

min, read

the saved window widths and spectrum
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Conclusion

1 SAC is a numerical method to carry out anti-Laplacian
transformation to obtain S(ω) out of G(τ), which is a
numerically unstable problem.

2 We parametrize S(ω) into a series of δ function and
perform a fitting process and evaluate the goodness of the
fitting by a parameter χ2.

3 To avoid overfitting we sample over all possible S(ω)’s and
average with the weight of each exp(−χ2/2Θ)

4 Features can be added such as a predominant δ peak or a
sharp peak.

5 Basic code is given. Its structure and instruction are
overviewed.

6 Applications such as spectra of Heisenberg and frustrated
Ising magnets are introduced.
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