DMRG: Basics
 Ying-Jer Kao
 Department of Physics
 National Taiwan University

Exponential Wall

- Size of the Hilbert space grows exponentially with system size $\sim d^{N}$
- Size of the Hilbert space occupied the ground state grows much slower $\sim d N$

Density Matrix

Probability p_{i} in the pure state $\left|\psi_{i}\right\rangle$

$$
\rho=\sum_{i} p_{i}\left|\psi_{i}\right\rangle\left\langle\psi_{i}\right|
$$

- $\operatorname{tr} \rho=1$
- $\langle\psi| \rho|\psi\rangle \geq 0 \quad \forall \psi$

Observable

$$
\langle\mathcal{O}\rangle=\operatorname{tr}(\rho \mathcal{O})=\sum_{i} p_{i}\left\langle\psi_{i}\right| \mathcal{O}\left|\psi_{i}\right\rangle
$$

Reduced Density Matrix

$$
\begin{gathered}
\rho_{A}=\operatorname{tr}_{B}\left(\rho_{A B}\right) \\
|\psi\rangle=\frac{1}{\sqrt{2}}(|\uparrow \downarrow\rangle+|\downarrow \uparrow\rangle)
\end{gathered}
$$

$$
\rho_{A}=\operatorname{tr}_{B}(|\psi\rangle\langle\psi|)=\frac{1}{2}\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)
$$

Best description of region A

Reduced Density Matrix

$$
\begin{gathered}
\rho_{A}=\operatorname{tr}_{B}\left(\rho_{A B}\right) \\
|\psi\rangle=\frac{1}{\sqrt{2}}(|\uparrow \downarrow\rangle+|\downarrow \uparrow\rangle)
\end{gathered}
$$

$$
\rho_{B}=\operatorname{tr}_{A}(|\psi\rangle\langle\psi|)=\frac{1}{2}\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)
$$

Best description of region B

Schmidt Decomposition

- If $|\psi\rangle$ is a pure state, it can always be decomposed into

$$
|\psi\rangle=\sum_{i}^{N_{\lambda}} \lambda_{i}\left|i_{A}\right\rangle\left|i_{B}\right\rangle
$$

where
$\lambda_{i} \geq 0$ and

$\left\{\left|i_{A}\right\rangle\right\},\left\{\left|i_{B}\right\rangle\right\}$ are orthonormal basis of A, B

$$
\rho_{A}=\operatorname{tr}_{B}(|\psi\rangle\langle\psi|)=\sum_{i}^{N_{\lambda}} \lambda_{i}^{2}\left|i_{A}\right\rangle\left\langle i_{A}\right|
$$

Subsystem states

- What are the most important subsystem states ?

Hamiltonian

$$
H=H_{S}+H_{E}+H_{S E}
$$

Wavefunction

$$
|\psi\rangle=\sum_{i, \alpha} \psi_{i, \alpha}|i\rangle_{S}|\alpha\rangle_{E}
$$

Best approximation with m subsystem states:
$|\tilde{\psi}\rangle=\sum_{n=1}^{m} \sum_{\alpha} \tilde{\psi}_{n, \alpha}\left|\phi_{n}\right\rangle_{S}|\alpha\rangle_{E}$
Minimize the distance between states: $\quad S=| | \tilde{\psi}\rangle-\left.|\psi\rangle\right|^{2}$

Eigenstates of reduced DM

Controlled Approximation

$$
\begin{aligned}
|\psi\rangle & \approx\left|\psi_{A B}^{m}\right\rangle \equiv \sum_{i}^{m} \lambda_{i}\left|i_{A}\right\rangle\left|i_{B}\right\rangle, \quad m<N_{\lambda} \\
\epsilon & =1-\sum_{i=m+1}^{N_{\lambda}} \lambda_{i}^{2}
\end{aligned}
$$

- The accuracy of the approximation depends on how fast λ_{i} decays.

Approximate Wavefunctions

> m-dimensional MPS

1D ground state

General, including 2D

Entanglement Entropy

Von Neumann Entanglement Entropy

$$
S(A)=-\operatorname{tr}\left[\rho_{A} \ln \left(\rho_{A}\right)\right]=-\sum_{i} p_{i} \ln p_{i}=S(B)
$$

- Measures how entangled subregions A and B are.
- The number of states to keep, m, scales with S :

$$
m \sim e^{S(A)}
$$

Scaling of entanglement entropy

1D gapped : $S(L) \sim \ln (\xi) \Rightarrow \lim _{L \rightarrow \infty} m \sim$ const
1D gapless : $S(L) \sim \frac{c}{3} \ln (L) \Rightarrow \lim _{L \rightarrow \infty} m \sim L^{c / 3}$
DMRG Works

2D gapped and gapless : Area Law

$$
S(L) \sim L^{d-1} \Rightarrow \lim _{L \rightarrow \infty} m \sim e^{L^{d-1}}
$$

RG transformation

- Diagonalization of the reduced density matrix gives you the RG transformation.
- Truncation is done by truncating the transformation matrix.

$$
\rho_{A}^{d i a}=U \rho_{A} U^{-1}
$$

RG transformation

- Diagonalization of the reduced density matrix gives you the RG transformation.
- Truncation is done by truncating the transformation matrix.

$$
U \rightarrow U_{m}=\left(\begin{array}{cccc}
\left|1_{A}\right\rangle & \left|2_{A}\right\rangle & & \left|m_{A}\right\rangle \\
u_{11} & u_{12} & \cdots & u_{1 m} \\
u_{21} & u_{22} & \cdots & u_{2 m} \\
\vdots & \vdots & \ddots & \vdots \\
u_{N_{\lambda} 1} & u_{N_{\lambda} 2} & \cdots & u_{N_{\lambda} m}
\end{array}\right)_{m \times N_{\lambda}} \quad|\psi\rangle \rightarrow\left|\psi_{m}\right\rangle
$$

RG transformation

$$
N_{\lambda} \times N_{\lambda}
$$

$$
m \times m
$$

Operator Transformation

Basis truncation

$$
|\psi\rangle \rightarrow\left|\psi^{m}\right\rangle=\sum_{i=1}^{m} \lambda_{i}\left|i_{A}\right\rangle\left|i_{B}\right\rangle
$$

Heisenberg model

$$
\begin{aligned}
& H=\sum_{i}^{l} \mathbf{S}_{i} \cdot \mathbf{S}_{i+1}=\sum_{i} S_{i}^{z} S_{i+1}^{z}+\frac{1}{2}\left(S_{i}^{+} S_{i+1}^{-}+S_{i}^{-} S_{i+1}^{+}\right) \\
& S^{z}=\left(\begin{array}{cc}
1 / 2 & 0 \\
0 & -1 / 2
\end{array}\right) \quad S^{+}=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right) \quad S^{-}=\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right)
\end{aligned}
$$

$$
\begin{aligned}
S(l) & =\frac{1}{6} \ln \left[\frac{2 L}{\pi} \sin \left(\frac{\pi l}{L}\right)\right]+\frac{1}{2} c^{\prime}+\ln g \\
m & \sim e^{S(L / 2)} \approx L^{1 / 6}
\end{aligned}
$$

Split chain into blocks

Block Hamiltonian
Block Hamiltonian

$$
|\psi\rangle=\sum_{\substack{e_{i-1}, \sigma_{i} \\
\sigma_{i+1}+\sigma_{i+2}}} c_{e_{i-1}, \sigma_{i}, \sigma_{i+1}, b_{i+2}} \begin{gathered}
\text { system } \\
\left.\hline e_{i-1}\right\rangle \otimes\left|\sigma_{i}\right\rangle \otimes\left|\sigma_{i+1}\right\rangle \otimes\left|b_{i+2}\right\rangle \\
\hline
\end{gathered}
$$

Building the Hamiltonian

Single spin operator in the block
$I \otimes \mathbf{S}$

Building the Hamiltonian

Single spin operator in the block
$\mathbf{S} \otimes I$

Building the Hamiltonian

$$
\begin{gathered}
H_{s e}=\frac{1}{2}\left(S_{s, 2}^{+} \otimes S_{s, 3}^{-}+S_{s, 2}^{-} \otimes S_{s, 3}^{+}\right)+S_{s, 2}^{z} \otimes S_{s, 3}^{z} \\
S^{z}=\left(\begin{array}{cc}
1 / 2 & 0 \\
0 & -1 / 2
\end{array}\right) \quad S^{+}=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right) \quad S^{-}=\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right)
\end{gathered}
$$

Building the Hamiltonian

$$
\begin{aligned}
& H=H_{b}^{(s)} \otimes I+I \otimes H_{b}^{(e)}+ \\
& \quad\left(S_{x} \otimes S_{x}+S_{y} \otimes S_{y}+S_{z} \otimes S_{z}\right)
\end{aligned}
$$

Find the ground state

$$
H=H_{b}^{(s)} \otimes I+I \otimes H_{b}^{(e)}+H_{s e}
$$

- Find the ground state $\left|\psi_{0}\right\rangle$ of H
- Construct the density matrix $\rho=\left|\psi_{0}\right\rangle\left\langle\psi_{0}\right|$
- Construct the reduced density matrix

$$
\rho_{s}=\sum_{k l}\langle k|\left\langle l \mid \psi_{0}\right\rangle\left\langle\psi_{0} \mid k\right\rangle|l\rangle
$$

- Keeping m eigenstates $\left\{\left|\phi_{i}\right\rangle\right\}$ with largest eigenvalues $\left\{\Lambda_{i}\right\}$ of ρ_{s}

RG transformation

- Construct transformation matrix

$$
U_{m}=\left(\begin{array}{llll}
\left|\phi_{1}\right\rangle & \left|\phi_{2}\right\rangle & \ldots & \left|\phi_{m}\right\rangle
\end{array}\right)
$$

- Transform the block Hamiltonian and operators

$$
\tilde{H}_{b}^{(s)}=U_{m}^{\dagger} H_{b}^{(s)} U_{m}, \tilde{\mathbf{S}}=U_{m}^{\dagger}(I \otimes \mathbf{S}) U_{m}
$$

Building the Hamiltonian

$$
H_{b, 3}^{(s)}=\tilde{H}_{b, 2}^{(s)}+(\tilde{\mathbf{S}} \otimes I) \cdot(I \otimes \mathbf{S})
$$

$$
H_{b, 3}^{(e)}=\tilde{H}_{b, 2}^{(e)}+(I \otimes \mathbf{S}) \cdot(\tilde{\mathbf{S}} \otimes I)
$$

Building the Hamiltonian

$$
H_{b, 3}^{(s)}=\tilde{H}_{b, 2}^{(s)}+(\tilde{\mathbf{S}} \otimes I) \cdot(I \otimes \mathbf{S})
$$

$$
H_{s e}=(\mathbf{S} \otimes I) \cdot(I \otimes \mathbf{S})
$$

$$
H=H_{b, 3}^{(s)} \otimes I+I \otimes H_{b, 3}^{(e)}+H_{s e}
$$

RG transformation

- Find the ground state $\left|\psi_{0}\right\rangle$ of H
- Construct the density matrix $\rho=\left|\psi_{0}\right\rangle\left\langle\psi_{0}\right|$
- Construct the reduced density matrix

$$
\rho_{s}=\sum_{k l}\langle k|\left\langle l \mid \psi_{0}\right\rangle\left\langle\psi_{0} \mid k\right\rangle|l\rangle
$$

- Keeping m eigenstates $\left\{\left|\phi_{i}\right\rangle\right\}$ with largest eigenvalues $\left\{\Lambda_{i}\right\}$ of ρ_{s}

RG transformation

- Construct transformation matrix

$$
U_{m}=\left(\begin{array}{llll}
\left|\phi_{1}\right\rangle & \left|\phi_{2}\right\rangle & \ldots & \left|\phi_{m}\right\rangle
\end{array}\right)
$$

- Transform the block Hamiltonian and operators

$$
\tilde{H}_{b, 3}^{(s)}=U_{m}^{\dagger} H_{b, 3}^{(s)} U_{m}, \tilde{\mathbf{S}}=U_{m}^{\dagger}(I \otimes \mathbf{S}) U_{m}
$$

Infinite-size DMRG

$00 \cdots \circ \cdots 00$

$00 \cdots 00 \cdots 00$
 system block environment block

truncation
$00 \cdot \cdots$
$0 \cdot \cdots>$

Finite-size DMRG

- Grow the chain to the desired size
- Improve ground state (energy) by sweeping

Sweeping

Reuse the operator

Finite-size DMRG

Sweeping

Measurements

$$
\tilde{S}_{i}^{z}=O(i, L / 2)^{\dagger} S_{i}^{z} O(i, L / 2)
$$

$$
O(i, L / 2)=U_{m}(i) U_{m}(i+1) \cdots U_{m}(L / 2)
$$

Fermionic sign

Jordan-Wigner transformation

Optimization

- Use symmetries
- Guess for Lanczos (wave function transformation)
- Everything under m³
- DGEMM should be your best friend

