Introduction to DMRG

Ying-Jer Kao Department of Physics, National Taiwan University

1) Density Matrix Renormalization Group - overview and basics

2) Entanglement Entropy in condensed matter systems

What is the Density Matrix Renormalization Group?

 DMRG is the established leading method for simulation of statistics and dynamics of onedimensional strongly-correlated quantum lattice models.

$$H = J \sum_{\langle ij \rangle} \mathbf{S}_i \cdot \mathbf{S}_j$$

Steve White

Exponential state space

$$\Omega = 2^N$$

Quantum Monte Carlo simulations avoid this direct sum by statistical sampling based on random numbers.

$$\langle \mathcal{O} \rangle = \frac{1}{Z} \sum_{i=1}^{\Omega} \mathcal{O}_i e^{-\beta E_i}$$

Cannot simulate fermions (or frustrated spins)

Exact Diagonalization

Exponential Hilbert Space: 2^N

Maximum number of S=1/2 spins: 40~44

Renormalization Group

- Reduce the size of this Hilbert space through some clever decimation procedure
- Keep only the important information
- Perform an ED using the remaining Hilbert space

Renormalization Group

Wilson's Numerical RG

• Reduce the size of the Hilbert space by an RG-like procedure that truncates the **energy levels**

- Truncating the higher energy eigenvalues only works well for a few specific models - fails in general
- 20 years after Wilson's original idea, Steve White fixed the method to produce DMRG
- The right quantity to truncate is the number of **entanglement** degrees of freedom represented

System ground state ≠ product of subsystem low energy states

- 10 blocks (2048 sites), 8 states kept
- Very poor results
- Treatment of boundary condition is critical

State	Exact	NRG
Eo	2.351 × 10 ⁻⁶	1.9207×10^{-2}
Eı	9.403 × 10 ⁻⁶	1.9209×10^{-2}
E ₂	2.116×10^{-5}	1.9714×10^{-2}

S.R. White and R.M. Noack, PRL 68, 3487 (1992)

Particle in a box: Better Solution

- Embed A in an environment
- Diagonalize the system+ environment, then increase size

Subsystem States

• What are the most important subsystem states ?

Hamiltonian $H = H_S + H_E + H_{SE}$

Wavefunction

$$|\psi\rangle = \sum_{i,\alpha} \psi_{i,\alpha} |i\rangle_S |\alpha\rangle_E$$

Best approximation with m subsystem states:

$$|\tilde{\psi}\rangle = \sum_{n=1}^{m} \sum_{\alpha} \tilde{\psi}_{n,\alpha} |\phi_n\rangle_S |\alpha\rangle_E$$

Minimize the distance between states: $S = \left| \tilde{\psi} \right\rangle - \left| \psi \right\rangle \right|^2$

 Instead of energy levels, truncate the eigenvalues of the reduced density matrix

keep

discard

The eigenvalues are probabilities

$$\sum_i \lambda_i^2 = 1$$

number of "states"

• In general, the number of DMRG states that you need to keep to faithfully represent a wavefunction is related to the **entanglement entropy** between the two blocks:

$$m = f(S)$$
 ?

1) Density Matrix Renormalization Group - overview and basics

2) Entanglement Entropy in condensed matter systems

von Neumann

 $S_1(\rho_A) = -\operatorname{Tr}(\rho_A \ln \rho_A)$ $\rho_A = \operatorname{Tr}_B(\rho)$

- Quantifies the entanglement between subregions A and B
- Does not depend on any choice of observable
- $S_1(\rho_A) = S_1(\rho_B)$
- $S_1(\rho_A) = 0$ if region A and B are unentangled

entanglement entropy of two spins

$$|\Psi\rangle = \cos\phi |\uparrow\rangle|\rangle + \sin\phi |\downarrow\rangle\uparrow\rangle$$

$$\rho_A = \left(\begin{array}{cc} \cos^2 \phi & 0\\ 0 & \sin^2 \phi \end{array}\right)$$

$$S_1 = -\cos^2 \phi \ln \cos^2 \phi - \sin^2 \phi \ln \sin^2 \phi$$

A = B

Renyi entanglement entropy

$$S_n(\rho_A) = \frac{1}{1-n} \ln \left[\operatorname{Tr}(\rho_A^n) \right]$$

$$S_1(\rho_A) = -\operatorname{Tr}(\rho_A \ln \rho_A) \qquad S_2(\rho_A) = -\ln\left[\operatorname{Tr}(\rho_A^2)\right]$$

two spins:

 $|\Psi\rangle = \cos\phi |\uparrow\rangle|\rangle + \sin\phi |\downarrow\rangle\uparrow\rangle$

entanglement and number of "states"

- $S_1(\rho_A) = 0$ minimally (for a product state)
- $S_1(\rho_A) = \ln(M)$ maximally (when all eigenvalues are equal)

in analogy, the effective number of states one needs in order to properly capture the entanglement between A and B is:

 $m \propto e^{S_1}$

- Therefore, the success of DMRG depends on the wavefunctions of interest having a "low degree" of entanglement
- This is the basis of the reformulation of DMRG in the Matrix Product State representation (see talks tomorrow)

• We take a minute to examine entanglement in some prototypical models of condensed-matter physics

gapped system

 For periodic boundary conditions in 1D, you need to keep the square of the number of states needed for open boundary conditions

• gapless/critical system $H = J \sum \mathbf{S}_i \cdot \mathbf{S}_j$

 $S_1 \propto c \ln[L] \Rightarrow m \propto L^{\text{const.}}$

- computational cost grows as the size of the system
- it is still possible to simulate large systems if c is small

gapless/critical system

$$H = J \sum_{\langle ij \rangle} \mathbf{S}_i \cdot \mathbf{S}_j$$

2

 $\ln(x')$

1

c = 1.013

4

3

$$S_{n}(x) = \frac{c}{6} \left(1 + \frac{1}{n}\right) \cdot \ln[x'] + \cdots$$

$$x' = \frac{L}{\pi} \sin\left(\frac{\pi x}{L}\right)$$

$$C=1: \text{ central charge of a conformal field theory}$$

$$C=1: \text{ central charge of a conformal field theory}$$

$$C=1: \text{ central charge of a conformal field theory}$$

$$C=1: \text{ central charge of a conformal field theory}$$

$$C=1: \text{ central charge of a conformal field theory}$$

$$C=1: \text{ central charge of a conformal field theory}$$

$$C=1: \text{ central charge of a conformal field theory}$$

$$C=1: \text{ central charge of a conformal field theory}}$$

$$C=1: \text{ central charge of a conformal field theory}$$

$$C=1: \text{ central charge of a conformal field theory}$$

$$C=1: \text{ central charge of a conformal field theory}$$

$$C=1: \text{ central charge of a conformal field theory}$$

$$C=1: \text{ central charge of a conformal field theory}$$

$$C=1: \text{ central charge of a conformal field theory}$$

$$C=1: \text{ central charge of a conformal field theory}$$

$$C=1: \text{ central charge of a conformal field theory}$$

$$C=1: \text{ central charge of a conformal field theory}$$

$$C=1: \text{ central charge of a conformal field theory}$$

$$C=1: \text{ central charge of a conformal field theory}$$

$$C=1: \text{ central charge of a conformal field theory}$$

$$C=1: \text{ central charge of a conformal field theory}$$

$$C=1: \text{ central charge of a conformal field theory}$$

$$C=1: \text{ central charge of a conformal field theory}$$

$$C=1: \text{ central charge of a conformal field theory}$$

$$C=1: \text{ central charge of a conformal field theory}$$

$$C=1: \text{ central charge of a conformal field theory}$$

$$C=1: \text{ central charge of a conformal field theory}$$

$$C=1: \text{ central charge of a conformal field theory}$$

$$C=1: \text{ central charge of a conformal field theory}$$

$$C=1: \text{ central charge of a conformal field theory}$$

$$C=1: \text{ central charge of a conformal field theory}$$

$$C=1: \text{ central charge of a conformal field theory}$$

$$C=1: \text{ central charge of a conformal field theory}$$

$$C=1: \text{ central charge of a conformal field theory}$$

$$C=1: \text{ central charge of a conformal field theory}$$

$$C=1: \text{ central charge of a conformal field theory}$$

$$C=1: \text{ central char$$

Holzhey, Larsen, Wilczek Nucl. Phys. B 424 443 (1994) Calabrese and Cardy, J. Stat. Mech: Theory Exp. P06002 (2004)

$$=\frac{1}{\sqrt{2}}\left(|\uparrow\downarrow\rangle-|\downarrow\uparrow\rangle\right)$$

$$= \frac{1}{\sqrt{2}} \left(|\uparrow \downarrow \rangle - |\downarrow \uparrow \rangle \right)$$

$$= \frac{1}{\sqrt{2}} \left(|\uparrow \downarrow \rangle - |\downarrow \uparrow \rangle \right)$$

Here, the entanglement depends on the boundary: the "Area Law"

the area law: a special property of groundstates

• or the "boundary rule-of-thumb"

coefficient is non-universal

- groundstate wavefunctions of local many-body Hamiltonians
- heuristically related to short-range correlations, Rev. Lett. 100, 070502 (2008)
- generally speaking, excited states exhibit a volume law $S \approx \alpha \ell^2$

entanglement at finite-temperatures

The entanglement entropy at finite-T picks up a "volume" law due to thermal mixing

gapped systems in two dimensions can have subleading terms in the entanglement entropy

$$S_n = a\ell + \cdots$$

 $S_n = a\ell - \ln(2)$

For example, a spin liquid (fluctuating loop gas) can have a **topological entanglement entropy**

The groundstate of a (Z_2) spin liquid can be thought of as a fluctuating "loop gas"

The groundstate of a (Z_2) spin liquid can be thought of as a fluctuating "loop gas"

This loop structure imposes **constraints** that subtract from the entanglement entropy of a pure area law:

$$\Omega \sim 2^{\ell - 1}$$

possible boundary configurations

$$S_n = a\ell - \gamma$$

$$\gamma = \ln(2)$$

gapless systems in two dimensions generally have subleading shape-dependent terms in the entanglement entropy

$$S_n = a\ell + \gamma(\ell_x, \ell_y)$$

Neel order, e.g. the groundstate of the 2D spin-1/2 Heisenberg model

$$H = J \sum_{\langle ij \rangle} \mathbf{S}_i \cdot \mathbf{S}_j$$

$$S_n = a\ell + b\ln(\ell) + \cdots$$

The subleading term is a consequence of Goldstone modes - has a **universal** coefficient

Quantum critical systems, e.g. transverse-field Ising model

$$H = J \sum_{\langle ij \rangle} S_i^z S_j^z + h \sum_i S_i^x$$

$$S_n = a\ell + c_n \ln(\ell) + \cdots$$

A subleading logarithm arises when one has **corners** in the region - the coefficient of this terms is universal for that particular universality class

Multiplicative logarithmic corrections to the area law occur in cases where one has a fermi surface in 2D

$$S_n = c \ell \ln(\ell) + \cdots$$

M.M. Wolf, Phys. Rev. Lett. **96**, 010404 (2006). D. Gioev, I. Klich, Phys. Rev. Lett. **96**, 100503 (2006).

... will this be the new "sign problem" for the 21st century?

$$m \propto \mathrm{e}^{S_1} \Rightarrow m \propto \mathrm{e}^{\ell}$$

 in general, the number of DMRG states that you need to keep to represent a groundstate wavefunction is exponential in the width

higher dimensions? Tensor Networks

 methods based on a "low-entanglement" ansatz in the wavefunction

DMRG is the established method for solving the ground states of strongly interacting systems in 1D

It continues to revolutionize the way we think of dealing with the strongly-interacting quantum manybody problem numerically