Introduction to DMRG

Ying－Jer Kao
Department of Physics，National Taiwan University

Outline

1) Density Matrix Renormalization Group - overview and basics
2) Entanglement Entropy in condensed matter systems

What is the
 Density Matrix Renormalization Group?

- DMRG is the established leading method for simulation of statistics and dynamics of onedimensional strongly-correlated quantum lattice models.

Steve White

Why do we need DMRG?

- There are only a few "exact" numerical methods capable of tackling quantum many-body problems using classical computers

Why do we need DMRG?

- There are only a few "exact" numerical methods capable of tackling quantum many-body problems using classical computers

Exponential state space

$$
\Omega=2^{N}
$$

$$
H=-J \sum_{\langle i j\rangle} S_{i}^{z} S_{j}^{z}
$$

Why do we need DMRG?

- There are only a few "exact" numerical methods capable of tackling quantum many-body problems using classical computers

Quantum Monte Carlo simulations avoid this direct sum by statistical sampling based on random numbers.

$$
\langle\mathcal{O}\rangle=\frac{1}{Z} \sum_{i=1}^{\Omega} \mathcal{O}_{i} e^{-\beta E_{i}}
$$

Cannot simulate fermions (or frustrated spins)

Why do we need DMRG?

- There are only a few "exact" numerical methods capable of tackling quantum many-body problems using classical computers

Exact Diagonalization

Exponential Hilbert Space: 2^{N}
Maximum number of $S=1 / 2$ spins: $40 \sim 44$

Renormalization Group

- Reduce the size of this Hilbert space through some clever decimation procedure
- Keep only the important information
- Perform an ED using the remaining Hilbert space

Renormalization Group

Wilson's Numerical RG

- Reduce the size of the Hilbert space by an RG-like procedure that truncates the energy levels

this can give very poor results

- Truncating the higher energy eigenvalues only works well for a few specific models - fails in general
- 20 years after Wilson's original idea, Steve White fixed the method to produce DMRG
- The right quantity to truncate is the number of entanglement degrees of freedom represented

Particle in a box

- Consider a particle in a box

Particle in a box

- Consider a particle in a box

Particle in a box

- Consider a particle in a box

Solutions built from the smaller blocks have a node at

Particle in a box

- Consider a particle in a box

System ground state \neq product of subsystem low energy states

Numerical RG results

- 10 blocks (2048 sites), 8 states kept
- Very poor results
- Treatment of boundary condition is critical

State	Exact	NRG
E_{0}	2.351×10^{-6}	1.9207×10^{-2}
E_{1}	9.403×10^{-6}	1.9209×10^{-2}
E_{2}	2.116×10^{-5}	1.9714×10^{-2}

S.R. White and R.M. Noack, PRL 68, 3487 (1992)

Particle in a box: Better Solution

- Embed A in an environment
- Diagonalize the system+ environment, then increase size

Subsystem States

- What are the most important subsystem states ? Hamiltonian

$$
H=H_{S}+H_{E}+H_{S E}
$$

Wavefunction

$$
|\psi\rangle=\sum_{i, \alpha} \psi_{i, \alpha}|i\rangle_{S}|\alpha\rangle_{E}
$$

Best approximation with m subsystem states:
$|\tilde{\psi}\rangle=\sum_{n=1}^{m} \sum_{\alpha} \tilde{\psi}_{n, \alpha}\left|\phi_{n}\right\rangle_{S}|\alpha\rangle_{E}$
Minimize the distance between states: $\quad S=| | \tilde{\psi}\rangle-\left.|\psi\rangle\right|^{n}$

Reduced density matrix

- Instead of energy levels, truncate the eigenvalues of the reduced density matrix

$$
\begin{aligned}
|\psi\rangle & =\sum_{i} \lambda_{i}\left|i_{A}\right\rangle\left|i_{B}\right\rangle \\
\rho_{A} & =\sum_{i} \lambda_{i}^{2}\left|i_{A}\right\rangle\left\langle i_{A}\right|
\end{aligned}
$$

number of "states"

eigenvalues of the reduced density matrix

- In general, the number of DMRG states that you need to keep to faithfully represent a wavefunction is related to the entanglement entropy between the two blocks:

$$
m=f(S) ?
$$

Outline

1) Density Matrix Renormalization Group - overview and basics
2) Entanglement Entropy in condensed matter systems

entanglement entropy

von Neumann

$$
\begin{aligned}
S_{1}\left(\rho_{A}\right) & =-\operatorname{Tr}\left(\rho_{A} \ln \rho_{A}\right) \\
\rho_{A} & =\operatorname{Tr}_{B}(\rho)
\end{aligned}
$$

- Quantifies the entanglement between subregions A and B
- Does not depend on any choice of observable
- $S_{1}\left(\rho_{A}\right)=S_{1}\left(\rho_{B}\right)$
- $S_{1}\left(\rho_{A}\right)=0$ if region A and B are unentangled

entanglement entropy of two spins

$$
\begin{aligned}
& |\Psi\rangle=\cos \phi|\uparrow\rangle|\|\rangle+\sin \phi|\| X\rangle\rangle \\
& \rho_{A}=\left(\begin{array}{cc}
\cos ^{2} \phi & 0 \\
0 & \sin ^{2} \phi
\end{array}\right) \\
& S_{1}=-\cos ^{2} \phi \ln \cos ^{2} \phi-\sin ^{2} \phi \ln ^{2} \sin ^{2} \phi \\
& \left.\frac{1}{\sqrt{2}}(|\uparrow \downarrow\rangle-\| \uparrow\rangle\right)
\end{aligned}
$$

$$
\begin{aligned}
& \uparrow=A \\
& \uparrow=B
\end{aligned}
$$

Renyi entanglement entropy

$$
\begin{gathered}
S_{n}\left(\rho_{A}\right)=\frac{1}{1-n} \ln \left[\operatorname{Tr}\left(\rho_{A}^{n}\right)\right] \\
S_{1}\left(\rho_{A}\right)=-\operatorname{Tr}\left(\rho_{A} \ln \rho_{A}\right) \quad S_{2}\left(\rho_{A}\right)=-\ln \left[\operatorname{Tr}\left(\rho_{A}^{2}\right)\right]
\end{gathered}
$$

two spins:

$$
|\Psi\rangle=\cos \phi|\uparrow\rangle|\|\rangle+\sin \phi|\|\rangle \uparrow\rangle
$$

entanglement and number of "states"

$$
\rho_{A}=\sum_{i} \lambda_{i}^{2}\left|i_{A}\right\rangle\left\langle i_{A}\right|
$$

- $S_{1}\left(\rho_{A}\right)=0$ minimally (for a product state)
- $S_{1}\left(\rho_{A}\right)=\ln (M)$ maximally (when all eigenvalues are equal)
in analogy, the effective number of states one needs in order to properly capture the entanglement between A and B is:

$$
m \propto \mathrm{e}^{S_{1}}
$$

DMRG and entanglement cutoff

- Therefore, the success of DMRG depends on the wavefunctions of interest having a "low degree" of entanglement
- This is the basis of the reformulation of DMRG in the Matrix Product State representation (see talks tomorrow)

- We take a minute to examine entanglement in some prototypical models of condensed-matter physics

entanglement in one dimension

- gapped system

AKLT

$$
\left.\left.\left.D=\frac{1}{\sqrt{2}}(\| \uparrow \downarrow\rangle-\| \downarrow\right\rangle\right\rangle\right) \quad S_{1}\left(\rho_{A}\right)=\ln (2)
$$

$m \propto \mathrm{e}^{S_{1}} \Rightarrow m \propto 2 \quad$ (constant)

entanglement in one dimension

$$
\begin{gathered}
S_{1}\left(\rho_{A}\right)=2 \ln (2)=\ln \left(2^{2}\right) \\
m \propto \mathrm{e}^{S_{1}} \Rightarrow m \propto 2^{2}
\end{gathered}
$$

- For periodic boundary conditions in 1D, you need to keep the square of the number of states needed for open boundary conditions

entanglement in one dimension

- gapless/critical system $\quad H=J \sum_{\langle i j\rangle} \mathbf{S}_{i} \cdot \mathbf{S}_{j}$

$$
S_{1} \propto c \ln [L] \Rightarrow m \propto L^{\text {const. }}
$$

- computational cost grows as the size of the system
- it is still possible to simulate large systems if c is small

entanglement in one dimension

- gapless/critical system $\quad H=J \sum_{\langle i j\rangle} \mathbf{S}_{i} \cdot \mathbf{S}_{j}$

$$
S_{n}(x)=\frac{c}{6}\left(1+\frac{1}{n}\right) \cdot \ln \left[x^{\prime}\right]+\cdots
$$

$$
x^{\prime}=\frac{L}{\pi} \sin \left(\frac{\pi x}{L}\right)
$$

$c=1$: central charge of a conformal field theory

entanglement in two dimensions

entanglement in two dimensions

$$
\rangle=\frac{1}{\sqrt{2}}(\| \| \downarrow\rangle-\| \uparrow\right\rangle\right)
$$

entanglement in two dimensions

$$
\rangle=\frac{1}{\sqrt{2}}(\| \| \downarrow\rangle-\| \uparrow\right\rangle\right)
$$

entanglement in two dimensions

$$
\rangle=\frac{1}{\sqrt{2}}(\| \| \downarrow\rangle-\| \uparrow\right\rangle\right)
$$

Here, the entanglement depends on the boundary: the "Area Law"

the area law: a special property of groundstates

- or the "boundary rule-of-thumb"

$S_{n}=a \ell+\cdots$

coefficient is non-universal
- groundstate wavefunctions of local many-body Hamiltonians

- generally speaking, excited states exhibit a volume law

entanglement at finite-temperatures

The entanglement entropy at finite-T picks up a "volume" law due to thermal mixing

additive corrections to the area law $(\mathrm{T}=0)$

gapped systems in two dimensions can have subleading terms in the entanglement entropy

$$
S_{n}=a \ell+\cdots
$$

$$
S_{n}=a \ell-\ln (2)
$$

For example, a spin liquid (fluctuating loop gas) can have a topological entanglement entropy

The groundstate of a $\left(Z_{2}\right)$ spin liquid can be thought of as a fluctuating "loop gas"

The groundstate of a $\left(Z_{2}\right)$ spin liquid can be thought of as a fluctuating "loop gas"

This loop structure imposes constraints that subtract from the entanglement entropy of a pure area law:

$$
\Omega \sim 2^{\ell-1}
$$

possible boundary configurations

$$
S_{n}=a \ell-\gamma
$$

$$
\gamma=\ln (2)
$$

additive corrections to the area law ($\mathrm{T}=0$)

gapless systems in two dimensions generally have subleading shape-dependent terms in the entanglement entropy

$$
S_{n}=a \ell+\gamma\left(\ell_{x}, \ell_{y}\right)
$$

additive corrections to the area law $(\mathrm{T}=0)$

Neel order, e.g. the groundstate of the 2D spin- $1 / 2$ Heisenberg model

$$
H=J \sum_{\langle i j\rangle} \mathbf{S}_{i} \cdot \mathbf{S}_{j}
$$

$$
S_{n}=a \ell+b \ln (\ell)+\cdots
$$

The subleading term is a consequence of Goldstone modes - has a universal coefficient

additive corrections to the area law $(\mathrm{T}=0)$

Quantum critical systems, e.g. transverse-field Ising model

$$
H=J \sum_{\langle i j\rangle} S_{i}^{z} S_{j}^{z}+h \sum_{i} S_{i}^{x}
$$

$$
S_{n}=a \ell+c_{n} \ln (\ell)+\cdots
$$

A subleading logarithm arises when one has corners in the region - the coefficient of this terms is universal for that particular universality class

"violations" of the area law in 2D

Multiplicative logarithmic corrections to the area law occur in cases where one has a fermi surface in 2D

$$
S_{n}=\mathrm{c} \ell \ln (\ell)+\cdots
$$ century?

the challenge for DMRG

$$
m \propto \mathrm{e}^{S_{1}} \Rightarrow m \propto \mathrm{e}^{\ell}
$$

- in general, the number of DMRG states that you need to keep to represent a groundstate wavefunction is exponential in the width

higher dimensions? Tensor Networks

- methods based on a "low-entanglement" ansatz in the wavefunction

conclusion

DMRG is the established method for solving the ground states of strongly interacting systems in 1D

It continues to revolutionize the way we think of dealing with the strongly-interacting quantum manybody problem numerically

