
Introduction to  
DMRG

Ying-Jer Kao

Department of Physics, National Taiwan University



Outline

1) Density Matrix Renormalization Group - overview and 
basics


2) Entanglement Entropy in condensed matter systems



What is the 

Density Matrix Renormalization Group?

• DMRG is the established leading method for 
simulation of statistics and dynamics of one-
dimensional strongly-correlated quantum lattice 
models.
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Why do we need DMRG?

• There are only a few “exact” numerical methods 
capable of tackling quantum many-body problems 
using classical computers 
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Quantum Monte Carlo simulations 
avoid this direct sum by statistical 
sampling based on random numbers.

Cannot simulate fermions (or frustrated spins)

• There are only a few “exact” numerical methods 
capable of tackling quantum many-body problems 
using classical computers 

Why do we need DMRG?
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Exact Diagonalization

Maximum number of S=1/2 spins: 40~44

• There are only a few “exact” numerical methods 
capable of tackling quantum many-body problems 
using classical computers 

Exponential Hilbert Space: 2N

Why do we need DMRG?



• Reduce the size of this Hilbert space through 
some clever decimation procedure 

• Keep only the important information
• Perform an ED using the remaining Hilbert 

space

The (very) basic idea behind DMRG

•  Reduce the size of this Hilbert space through some clever 
decimation procedure

• Keep only the “important” information

• Perform an exact diagonalization using the remaining 
Hilbert space
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FIG. 6. The RG map R(h) defines a RG flow in the space of two-site interactions h. The scaling superoperator S(o), Eq. 41,
transforms two-site operators o at the fixed points of this RG flow.

into an effective Hamiltonian H ′,

H ′ = 3
∑

s

h′(s, s + 1), h′(s, s + 1) ≡ h′, (33)

where the constant two-site operator h′ is obtained from h by the RG map R,

h′ = R(h) ≡ Āh(h). (34)

Notice that, by construction, R(h) is a non-linear function of h.
Given the two-site interaction term h(0) ≡ h of the initial Hamiltonian H(0) ≡ H , we can now build a sequence of

two-site interactions

h(0) R−→ h(1) R−→ h(2) R−→ · · · (35)

where h(τ) characterizes the Hamiltonian H(τ) = 3τ
∑

s h(τ)(s, s + 1) of the coarse-grained lattice L(τ). This defines
a discrete RG flow in the (χ4-dimensional) space of possible two-site interactions that we can use to study how the
Hamiltonian of the system changes with the observation scale.

B. Properties of the RG map

Let us briefly discuss a few properties of the RG map R(h):
(i) Proper RG flow.— Abundant numerical evidence suggests that properly chosen disentanglers indeed succeed at

removing all short-distance degrees of freedom. As a result, if two Hamiltonians H1 and H2 correspond to the same

phase, multiple applications of the RG map take h(0)
1 and h(0)

2 into the same fixed-point interaction h∗, that is h∗
1 = h∗

2
(up to trivial changes of local basis).

(ii) Nearest neighbor interactions.— As mentioned earlier, the present coarse-graining transformation does not
generate long-range interactions starting from a short-ranged Hamiltonian (in contrast e.g. with momentum-space RG
methods). In addition, a Hamiltonian containing arbitrary short-range interactions (well beyond nearest neighbors)
can be reduced, after a few iterations, to a Hamiltonian with only nearest neighbor interactions6. Therefore the two-
site RG map R(h) can be used to study arbitrary phases with short-range interactions. In two spatial dimensions,
the analogous construction leads to an RG flow for four-site Hamiltonians.

(iii) Unbiased RG map.— Notice that the space V′ for an effective site of L′ is not chosen a priori on the basis
of heuristic arguments, nor is some specific form of the effective Hamiltonian H ′ (with a few free parameters to be

6 A coarse-graining step with trivial disentanglers is required (once) in order to eliminate some of the next-to-nearest neighbor interactions.

HN+1 = R (HN )

R R

see: Tomorrow’s talks 



Wilson’s Numerical RG

H2 H3 H4
H3

E

• Reduce the size of the Hilbert space by an RG-like 
procedure that truncates the energy levels

E1

Em

Em+1

keep

discard



• 20 years after Wilson’s original idea, Steve White 
fixed the method to produce DMRG

this can give very poor results

• Truncating the higher energy eigenvalues only 
works well for a few specific models - fails in 
general

• The right quantity to truncate is the number of 
entanglement degrees of freedom represented



• For example: consider a simple particle in a box. 
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this can give very poor results

• For example: consider a simple particle in a box. 

 Solutions built from the smaller 
“blocks” have a node at the center
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Solutions built from the 
smaller blocks have a node at 
the center

• Consider a particle in a box

Particle in a box



this can give very poor results

• For example: consider a simple particle in a box. 

 Solutions built from the smaller 
“blocks” have a node at the center
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System ground state ≠ product of 
subsystem low energy states

Particle in a box

• Consider a particle in a box



• 10 blocks (2048 sites), 8 states kept

• Very poor results

• Treatment of boundary condition is critical 

State Exact NRG

E0 2.351 × 10−6 1.9207 × 10−2

E1 9.403 × 10−6 1.9209 × 10−2 

E2 2.116 × 10−5 1.9714 × 10−2

S.R. White and R.M. Noack, PRL 68, 3487 (1992)

• For example: consider a simple particle in a box. 

A B

this can give very poor results
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Numerical RG results



• Embed A in an environment

• Diagonalize the system+ environment, 
then increase size

the solution is to embed A in an environment

• diagonalize the system+ environment, then increase size

A B A B

The mixing and truncation occurs via the 
reduced density matrix

�A = TrB |⇥⇥�⇥|
Thursday, March 31, 2011

Particle in a box: Better Solution



• What are the most important subsystem states ?

What are the most important subsystem states ?

Subsystem + Environment

Hamilton operator
H = HS + HE + HSE

Wavefunction
|ψ⟩ =

∑

i,α ψi,α |i⟩S |α⟩E

Best approximation with m subsystem states ?

|ψ̃⟩ =
m

∑

n=1

∑

α

ψ̃n,α |φn⟩S |α⟩E
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What are the most important subsystem states ?

Subsystem + Environment

Hamilton operator
H = HS + HE + HSE

Wavefunction
|ψ⟩ =

∑

i,α ψi,α |i⟩S |α⟩E

Best approximation with m subsystem states ?

|ψ̃⟩ =
m

∑

n=1

∑

α

ψ̃n,α |φn⟩S |α⟩E

Best approximation with m subsystem states:

Subsystem States

S =
���| ̃i � | i

���
2

Minimize the distance between states:



Reduced density matrix

• Instead of energy levels, truncate the eigenvalues of 
the reduced density matrix

• The eigenvalues are probabilities 

⇢A =
X
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number of “states”

keep

discard

�max

�m
�m+1

• In general, the number of DMRG states that you 
need to keep to faithfully represent a wavefunction is 
related to the entanglement entropy between the 
two blocks:

m
eigenvalues of the 


reduced density matrix

m = f(S) ?
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1) Density Matrix Renormalization Group - overview and 
basics


2) Entanglement Entropy in condensed matter systems



entanglement entropy

A B

�A = TrB(�)

• Quantifies the entanglement between subregions A and B

• Does not depend on any choice of observable

• 

•                     if region A and B are unentangled

S1(�A) = �Tr(�A ln �A)

S1(�A) = S1(�B)

S1(�A) = 0

von Neumann 



entanglement entropy of two spins

= B

= A

-( )1p
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Renyi entanglement entropy

S1(⇢A) = �Tr(⇢A ln ⇢A) S2(�A) = � ln
�
Tr(�2

A)
�

Sn(�A) =
1

1� n
ln
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�
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S2

S1

�
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two spins:



entanglement and number of “states”

⇢A =
X

i

�2
i |iAihiA| keep

discard

�max

�m
�m+1

•                     minimally (for a product state)S1(�A) = 0

•                         maximally (when all eigenvalues are equal)

�M

S1(⇢A) = ln(M)

in analogy, the effective number of states one needs in order to 
properly capture the entanglement between A and B is: 

m / eS1



DMRG and entanglement cutoff

• Therefore, the success of DMRG depends on the 
wavefunctions of interest having a “low degree” of 
entanglement  

• This is the basis of the reformulation of DMRG in the 
Matrix Product State representation (see talks 
tomorrow)

• We take a minute to examine entanglement in some 
prototypical models of condensed-matter physics 



entanglement in one dimension

S1(⇢A) = ln(2)

A B

m / 2

-( )
1p
2=

AKLT

• gapped system

( constant)m / eS1 )



entanglement in one dimension

AKLT

A B

S1(⇢A) = 2 ln(2) = ln(22)

m / 22

• For periodic boundary conditions in 1D, you need to 
keep the square of the number of states needed for open 
boundary conditions

m / eS1 )



entanglement in one dimension

H = J
�

�ij�

Si · Sj• gapless/critical system

S1 / c ln[L] ) m / Lconst.

• computational cost grows as the size of the system

• it is still possible to simulate large systems if c is small

A B

x = 4

L = 11



c = 1.013

c = 1.011
L = 200

Calabrese, Campostrini, Essler, Nienhuis

PRL 104, 095701 (2010)


ln(x0)

entanglement in one dimension

H = J
�

�ij�

Si · Sj• gapless/critical system

x� =
L

�
sin

��x

L

�

Holzhey, Larsen, Wilczek Nucl. Phys. B 424 443 (1994)


Calabrese and Cardy, J. Stat. Mech: Theory Exp.  P06002  (2004)


c=1: central 
charge of a 

conformal field 
theory

Sn(x) =
c

6

�
1 +

1
n

�
· ln [x�] + · · ·



A

B

entanglement in two dimensions
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entanglement in two dimensions
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=

entanglement in two dimensions



Here, the entanglement depends on the boundary: the “Area Law”

S � �

-( )1p
2

=

entanglement in two dimensions



• or the “boundary rule-of-thumb”

the area law: a special property of groundstates

Sn = a� + · · ·

AB
�

• groundstate wavefunctions of local many-body 
Hamiltonians


• heuristically related to short-range correlations


• generally speaking, excited states exhibit a volume law

Wolf et al. Phys. Rev. Lett. 100, 070502 (2008)

S � a�2

coefficient is non-universal



entanglement at finite-temperatures

The entanglement entropy at finite-T picks up a “volume” law 
due to thermal mixing

T

S2(T )

SA = SB

� = 4
B

A



additive corrections to the area law (T=0)

gapped systems in two dimensions can have subleading 
terms in the entanglement entropy

Sn = a� + · · ·

For example, a spin liquid 
(fluctuating loop gas) can have a 
topological entanglement 
entropy

Sn = a�� ln(2)



The groundstate of a (Z2) spin liquid can be thought of as a 
fluctuating “loop gas”




� = ln(2)

This loop structure imposes constraints that subtract from the 
entanglement entropy of a pure area law:

� � 2��1

possible boundary configurations

The groundstate of a (Z2) spin liquid can be thought of as a 
fluctuating “loop gas”


Sn = a�� �



additive corrections to the area law (T=0)
gapless systems in two dimensions generally have 
subleading shape-dependent terms in the entanglement 
entropy

Sn = a� + �(�x, �y)

`x

`y



Neel order, e.g. the groundstate of the 2D spin-1/2 
Heisenberg model

Sn = a� + b ln(�) + · · ·

The subleading term is a 
consequence of Goldstone 
modes - has a universal 
coefficient 

H = J
�

�ij�

Si · Sj

additive corrections to the area law (T=0)

Kallin et. al. PRB 84, 165134 (2011) 
Metlitski and Grover, arXiv:1112.5166




Quantum critical systems, e.g. transverse-field Ising model 

A subleading logarithm 
arises when one has 
corners in the region - the 
coefficient of this terms is 
universal for that particular 
universality class

H = J
�

�ij�

Sz
i Sz

j + h
�

i

Sx
i

Sn = a� + cn ln(�) + · · ·

additive corrections to the area law (T=0)

Casini and Huerta Nucl. Phys. B 764 183 (2007)




“violations” of the area law in 2D

Multiplicative logarithmic corrections to the area law 
occur in cases where one has a fermi surface in 2D

kx

ky

Sn = c � ln(�) + · · ·  M.M. Wolf, Phys. Rev. Lett. 96, 010404 (2006). 

D. Gioev, I. Klich, Phys. Rev. Lett. 96, 100503 (2006). 

... will this be the new “sign problem” for the 21st 
century?



the challenge for DMRG

m � e�

• in general, the number of DMRG states that you need 
to keep to represent a groundstate wavefunction is 
exponential in the width

m / eS1 )



higher dimensions?  Tensor Networks

• methods based on a “low-entanglement” ansatz in 
the wavefunction



conclusion

DMRG is the established method for solving the 
ground states of strongly interacting systems in 1D

It continues to revolutionize the way we think of 
dealing with the strongly-interacting quantum many-
body problem numerically


