Monte Carlo simulation on population synthesis of y-ray pulsars

Jumpei Takata
Yu Wang
K.S. Cheng
(University of Hong Kong)

Outline

Fermi γ-ray pulsars

- 1, Introduction
- -Fermi y-ray pulsars
- -Population on canonical pulsars
- 2, A Monte-Carlo simulation
- -y-ray emission model (outer gap model)
- 3, Results

1, Introduction

Fermi y-ray pulsars

- CGRO in 1990s discovered 7 y-ray pulsars
- Fermi first pulsarcatalog reported 47 γray pulsars (Abdo et al. 2010),
 (a)39 canonical pulsars
 - -22 radio selected pulsars
 - -17 γ-ray selected pulsars (including Geminga) (b) 8 millisecond pulsars
- And more....

Radio pulsars

Which pulsars can be seen by Fermi?

The pulsar activity is caused by releasing the rotation energy (spin-down power).

$$L_{sd} = 4 \times 10^{31} P^{-3} (\dot{P}/10^{-15}) erg/s$$

P; Rotation period P-dot; Time derivative of rotation period

A fraction of spin down power is converted into γ-ray emissions.

$$F_{\gamma} \propto L_{sd}/D^2$$

Population; Lyvs.Lsd

β~0.5??, which was predicted by CGRO

Populations (canonical pulsars)

- Fermi can provide a more detail statistical properties of the γ -ray pulsars.
- Different emission models will predict different population.
- The observed population can be use to test the theoretical model.
- How many y-ray pulsars will be found?

2, A Monte-Carlo Simulation

 A Monte Carlo simulation for the canonical γ-ray pulsars

 The simulated population is compared with the Fermi observations.

Initial input 1~2 per century (spacial position, period, magnetic field) Solve the trajectory from its birth to current time Current position, period, magnetic field Radio emissions Yes No y-ray emissions y-ray emissions Yes No Yes No y-selected Radio-selected Radio pulsars No detection y-ray pulsars y-ray pulsars

Initial distribution

- Sturner & Dermer 1996
- Spacial distribution

(1)
$$\rho_R(R) = \frac{a_R \mathrm{e}^{-R/R_{\mathrm{exp}}} R}{R_{\mathrm{exp}}^2},$$

(2)
$$\rho_z(z) = \frac{1}{z_{\text{exp}}} e^{-|z|/z_{\text{exp}}},$$

$$a_R = 20 \text{ kpc}, \qquad R_{\text{exp}} = 4.5 \text{ kpc}$$

$$z_{exp} = 75 \text{ pc.}$$

(3) Azimuthal direction; Random distribution with equal probability.

Initial distribution

- Velocity
 - -Maxwell distribution with a width $\sigma_v = 265 \text{ km/s}$,

$$\rho_v(v) = \sqrt{\frac{\pi}{2}} \frac{v^2}{\sigma_v^3} e^{-v^2/2\sigma_v^2}.$$

- Rotation period; Pi=30ms
- Surface magnetic field

$$\log_{10} B_0 = 12.6$$
 and $\sigma_B = 0.1$

$$\rho_B(\log_{10} B) = \frac{1}{\sqrt{2\pi}\sigma_B} \exp\left[-\frac{1}{2} \left(\frac{\log_{10} B - \log_{10} B_0}{\sigma_B}\right)^2\right],$$

Evolution

Equation of motion (Paczynski 1990)

$$\frac{dR^2}{dt^2} = \frac{v_\phi^2}{R} - \frac{\partial \Phi_{tot}}{\partial R}, \qquad \frac{dz^2}{dt^2} = -\frac{\Phi_{tot}}{z},$$

$$\frac{dz^2}{dt^2} = -\frac{\Phi_{tot}}{z},$$

$$Rv_{\phi} = \text{constant},$$

$$\Phi_i(R,z) = -\frac{GM_i}{\{R^2 + [a_i + (z^2 + b_i^2)^{1/2}]^2\}^{1/2}},$$

$$\Phi_h(r) = \frac{GM_c}{r_c} \left[\frac{1}{2} \ln \left(\frac{r^2}{r_c^2} \right) + \frac{r_c}{r} \tan^{-1} \left(\frac{r}{r_c} \right) \right],$$

(1) Disk component

$$a_{dis} = 3.7 \text{ kpc}, b_{dis} = 0.20 \text{ kpc},$$

$$M_{dis} = 8.07 \times 10^{10} M_{\odot}$$

(3) Halo component

$$r_c=6.0~{\rm kpc}~M_c=5.0\times 10^{10} M_{\odot}$$

(2) Spheroid component

$$a_{sph} = 0, b_{sph} = 0.277 \text{ kpc}$$

$$M_{sph} = 1.12 \times 10^{10} M_{\odot}$$

We integrate the trajectory from its birth to current time (t=0).

Evolution

- Magnetic field
 - -constant, T<10Myr.
 - -we will sample the neutron star younger than 10Myr.
- Period
 - -Assuming dipole radiation

$$P(t) = \left(P_0 + \frac{16\pi^2 R_*^6 B^2}{3Ic^3}t\right),\,$$

Period time derivative

$$\dot{P}(t) = \frac{8\pi^2 R_*^6 B^2}{3Ic^3 P}.$$

• Spin down age $au \equiv P/2P$

Radio emission

 We empirically describe the radio luminosity at 400MHz as a function of P and P;

$$\rho_{L_{400}}(P, \dot{P}) = 0.5\lambda^2 e^{-\lambda} \quad \lambda = 3.6[\log (L_{400}/\langle L_{400}\rangle) + 1.8]$$

$$\log \langle L_{400} \rangle = 6.64 + \frac{1}{3} \log (\dot{P}/P^3)$$

- Detection L₄₀₀/D² > Smin Smin; sensitivity
- Beaming effects (probability that radio beam point toward Earth or not)

$$f_r(\omega) = (1 - \cos \omega) + (\pi/2 - \omega) \sin \omega$$

Beam width (radius)
$$\omega = 0.02 r_{KG}^{1/2} P^{-1/2}$$
 $r_{KG} = 40 v_{GHz}^{-0.26} \dot{P}_{-15}^{0.07} P^{0.3}$

γ-ray emission model

 Pulsar γ-ray emission model predicts

 $L_{\gamma} \simeq f^3 L_{sd}$

- f≡Gap thickness/Size of magnetosphere (gap fractional thickness).
- The gap fractional thickness determines observed emission properties. (f is important factor)
- We investigate out gap model

Outer gap thickness model 1

- Zhang & Cheng (1997)
- Photon-photon process between the γ -rays and surface X-rays in the outer gap

$$E_{\rm X} \sim 0.1 f^{1/4} B_{12}^{1/4} P^{-5/12} \text{keV}$$

 $E_{\rm Y} \sim 0.1 f^{3/2} B_{12}^{4/3} P^{-7/4} \text{GeV}$

The pair-creation condition,

Ex·Ey=
$$(m_e c^2)^2$$
implies
 $f_{zc} \sim 5.5 B_{12}^{-4/7} P^{26/21}$

Outer gap thickness model 2

- Takata, Wang & Cheng (2010)
- The magnetic pair-creation process near the stellar surface.
- The pairs may affect the gap dynamics if the nondipole field is strong enough

$$f_m \sim 0.8 K P^{1/2} K \sim 1$$

Y-ray luminosity & Flux

$$L_{\gamma} = f_{zc}^{3} L_{sd} \qquad f_{zc} < f_{m} \qquad F \sim \frac{L_{\gamma}}{\Delta \Omega d^{2}}$$

$$L_{\gamma} = f_{m}^{3} L_{sd} \qquad f_{m} < f_{zc} \qquad \Delta \Omega = 1$$

3, Results

P-P diagram

Sample of pulsars

- Canonical pulsars
- The Fermi γ-ray pulsars has spin-down age τ<2Myr.
- The simulation predict no detectable γ-ray emissions from canonical pulsars with τ>5Myr.

 We sample the pulsars with T<5Myr.

Populations of the radio pulsars

Population of γ -ray pulsars "Bright" γ -ray pulsars (F>10⁻¹⁰ erg/cm²s)

- It is expected that most of the "bright" γ-ray pulsars have been already detected.
- Observations (F>10⁻¹⁰ erg/cm²s);
 Radio-selected; 12
 Y-selected; 13
- Simulations;
 Radio-selected; ~12
 y-selected; ~15
- The simulation predicts most of (or all) "bright" y-ray pulsars have been discovered.

Bright y-ray pulsars (F>10⁻¹⁰ erg/cm²s)

Pks; P value of Kolmogolov-Smirnov test

- We set the observed threshold energy flux at (1) $F=10^{-11}$ erg/cm²s for radio selected, (2) $F=5\times 10^{-11}$ erg/cm² s for γ -selected, which is the minimum flux in First catalog.
- Simulation predicts (1) \sim 42 for radio-selected (2) \sim 34 for y-selected

Note; Fermi observations;

- (1) 22 for radio-selected
- (2) 17 for y-selected

We expect more dim and distance y-ray pulsars can be detected by Fermi.

• We can predict the number of the detectable γ -ray pulsars with threshold energy flux

Summary

- Population of observed γ-ray pulsars by Fermi were used to test our outer gap model.
- We perform a Monte-Carlo simulation
- The present model can explain the population of the bright γ -ray pulsars (F>10⁻¹⁰ erg/cm2s)
- The model predicts more γ -ray pulsars can be detected by *Fermi*.
- It will be possible that more than 100γ -ray pulsars will be detected by *Fermi*

Simulation on Population synthesis of neutron star

- A Monte Carlo simulation on the neutron star (Sturner & Dermer 1996).
 - 1; The initial properties (position, velocity and surface magnetic field etc.) of new born neutron star are simulated using Monte Carlo method.
 - 2; Birth rate= 1-2 /century
 - 3; The current position is solved with Galactic potential.
- We select radio pulsars, radio-loud and radioquiet γ-ray pulsars with emission models.