

Very High-Energy Gamma-ray Astronomy

Thomas P.H. Tam (National Tsing Hua Univ)

University of Hong Kong, 21st June 2010

References

- Aharonian et al. 2008 (review in 2008)
- Hinton and Hofmann 2010 (ARA&A)
- Voelk and Bernloehr (Experimental Astronomy, 25:173-191, 2009, arXiv:0812.4198)
- Online catalogs, e.g. TeVCat
- My biased, personal collection of some VHE highlights....

Contents

- The questions in VHE (>100 GeV) astronomy
- VHE observation techniques
- Galactic objects: pulsar wind nebulae (PWNe) and shell-type SNRs
- Extragalactic objects: AGN, radio galaxies
- GRBs
- Globular clusters
- Future VHE experiments

The questions in VHE Astronomy

Astrophysics

- Probing the physics and the environment of "cosmic accelerators": neutron stars, SNRs, massive stars, supermassive black hole, jets, etc.
- Origin of cosmic rays
- Astroparticle Physics
 - Indirect search for dark matter
 - Search for energy dependence of the speed of light: break of "Lorentz invariance" or not?
- Cosmology
 - Indirect measure of the Extragalactic Background light: Help us to understand star formation history
 - Non-thermal content of galaxy clusters

Photon Energy

The detectors

A family of (selected) γ -ray detectors

Page 7 Fermi/LAT

PresentationPoint

Performance of Fermi/LAT and IACTs

Gamma-ray detectors in space and on ground

Advantages of IACTs over Fermi:

- (a) collection area higher by a factor of 10⁴;
- (b) better angular resolution;
- (c) much lower background photons for sources located at the Galactic plane.

Disadvantages of IACTs over Fermi:

- (a) Lower duty cycle;
- (b) smaller field of view.

Effective collection area & sensitivity of H.E.S.S.

Aharonian, et. al. (H.E.S.S. Collaboration), 2006

Observation principle

Air shower and Cherenkov light

Pair production

$$\gamma \rightarrow e^+ e^-$$

Bremsstrahlung

$$e^- + (\gamma) \rightarrow e^- + \gamma$$

Cascade develops

Cherenkov light

- ~10 ns light 'flash'
- 1° angle at 10 km height

 \rightarrow 100 m radius 'light-

A γ-ray image in one of the cameras

Disentangle γ -ray showers from that of cosmic rays

Voelk & Bernloehr, 2009

Stereo technique

Stereo technique

X 2

Stereo technique

Reconstruct the source position in the camera

What have we seen?

I. Galactic sources

H.E.S.S. galactic plane survey (2003-2009)

Chaves+ @ ICRC 2009

Selected Galactic VHE sources

Table 2 Selected Galactic VHE γ -ray sources with well-established multiwavelength counterparts

Object	Туре	Method	Flux	Reference
PSR B1259-63	Binary	Pos/Var	7*	Aharonian et al. (2005b)
LS 5039	Binary	Pos/Per	3*	Aharonian et al. (2006a)
LS I +61 303	Binary	Pos/Var	16*	Albert et al. (2006b)
RX J1713.7-39046	SNR	Mor	66	Aharonian et al. (2004)
Cassiopeia A	SNR	Pos	3	Aharonian et al. (2001)
Vela Junior	SNR	Mor	100	Katagiri et al. (2005)
RCW 86	SNR	Mor	5-10?	Aharonian et al. (2008)
SN 1006	SNR	Mor	?	Naumann-Godo et al. (2008)
Crab Nebula	PWN	Pos	100	Weekes et al. (1989)
G 0.9+0.1	PWN	Pos	2	Aharonian et al. (2005d)
MSH 15-52	PWN	Mor	15	Aharonian et al. (2005a)
HESS J1825-137	PWN	EDMor	12	Aharonian et al. (2006e)
Vela X	PWN	Mor	75	Aharonian et al. (2006g)

Hinton and Hofmann (2010)

Pulsar Wind Nebulae: Vela X

Aharonian, et al. (H.E.S.S. collaboration), 2006

- Spectral curvature : v F_v peaks in VHE, first clear indication
- "VHE observations of inverse Compton scattering of the CMBR allow direct inference of the spatial and spectral distribution of non-thermal electrons"
- PWN spatially displaced from the pulsar
- Environmental effects, e.g. nearby molecular clouds

MAGIC detection of the Crab pulsar above 25 GeV

Emission from polar cap and slot gap cut off around 10 GeV due to pair production

Origin of Cosmic-ray

Cosmic-ray spectrum

Resolved supernova-remnant: RX J1713.7-39.46

- Cosmic-rays up to 10¹⁵ eV has long been believed to come from Galactic supernova remnants
- Direct evidence hard to obtain: charge particles -> direction unknown
- Gamma-rays can be used to trace particle acceleration sites

Color: HESS excess image

Contour: ASCA 1-5 keV

smoothed

Aharonian et al., (H.E.S.S. collaboration), 2005, Nature

Have we seen the site of cosmic-ray acceleration?

- Both electrons and protons can radiate gamma-rays
- To distinguish hadronic models against leptonic models, detailed modeling is needed
- Fermi/LAT results should give a more definitive answer

(David Berge, PhD thesis)

γ-ray spectrum of RX J1713.7-3946

SN 1006: recently discovered in VHE γ-rays

Aharonian, et al. (H.E.S.S. collaboration), 2010, accepted by A&A, arXiv: 1004.2124

H.E.S.S. upper limits on 47 Tucanae

II. Extragalactic sources

PKS 2155-304 in 2006: extremely bright flares

Doubling time scale ~ 3min

suggests Lorentz factor > a few

Aharonian, et al. (H.E.S.S. collaboration), 2006

 No differences (time-lags) between light-curves in different energy ranges was found

$$M_{OG} > 7\%$$
 Planck mass

Radio-galaxies: emission region compatible with radio core

Cen A flux (E>250 GeV) = 0.8% Crab

HESS 95% CL limit

Constraint on Extragalactic Background Light

Aharonian, et al. (H.E.S.S. collaboration), 2006, Nature

Based on blazar spectra measurements of 1ES1102-232 and H2356-306

After correcting for the absorption, the spectrum at the source must have a spectral index > 1.5

suggests a low level of EBL

GeV emission from GRBs

GRB 090902B, Abdo et al. 2009

GRB 940217

Hurley et al., Nature, 1994

GRB 080916C

Abdo et al., Science, 2009

5-σ detection @ 200-1400 s

PresentationPoint

Simultaneous Obs of GRB 060602B by H.E.S.S.

- GRB060602B occurred in the H.E.S.S. FoV during the prompt phase
- Complete coverage
- First kind of its type:
 a burst in gamma-ray (15-150 keV)
 observed with an air Cherenkov instrument
- $_{90}$ = 9 sec
- No detection

H.E.S.S. Events in the proximity of burst time window (Aharonian et al., H.E.S.S. collaboration, 2009)

H.E.S.S. has observed over 40 GRBs but no detection yet...

Obs of GRB 050713A by MAGIC: fast-slewing

Albert, et al. (MAGIC collaboration), 2006

A plan of a future IACT experiment

Cherenkov telescope array (CTA)

CTA sensitivity

Summary

- VHE astronomy is a well-established field of astronomy: spectrum, images, light curves
- One can do cosmology, astroparticle physics with VHE detectors
- MAGIC-II, H.E.S.S.-II, VERITAS, CTA (future)
- Number VHE sources is approaching 100
- Galactic sources include PWN, SNR, helps our understanding of the origin of cosmic rays
- Extragalactic sources include AGN and radio galacties (and starburst galaxies), GRBs are yet to be detected
- Still waiting for detection on Globular clusters...