MICROQUASAR

"Gamma-ray Sky from Fermi: Neutron Stars and their Environment"

II. High Energy Phenomena around Black Holes

21 June 2010 Phyllis T. C. Yen 嚴子晴 @ The University of Hong Kong

OUTLINE

- General Properties of Microquasars:
 - Physical Scenario
 - Gamma-Ray Production in Microquasars
- Fermi Galactic Microquasars (in 1FGL):
 - LS 5039, LS I +61 303 and Cygnus X-3
- An Outlook:
 - Microquasar Jets or Pulsar Winds?
 - Dark Outflows and Super-Eddington Sources
 - Disk-Jet Coupling
 - Microquasar-GRB connections

General Properties - Physical Scenario

The maximum color temperature of accretion disk is $T_{col} \propto (M_{BH}/10M_{\odot})^{-1/4}$ The characteristic scale and time are proportional to M_{BH} : $R_{sh} = 2GM_{BH}/c^2$

High Mass Microquasars

 Table 1
 Microquasars in our Galaxy

Name	Position (J2000.0)	$_{\rm type^{(a)}}^{\rm System}$	D (kpc)	P_{orb} (d)	M_{compact} (M_{\odot})	Activity radio ^(b)	$eta_{ ext{apar}}$	$\theta^{(c)}$	Jet size (AU)	$\mathrm{Remarks}^{(\mathrm{d})}$
		High Mas	s X-ray	Binari	ies (HM2	XB)				
LS I +61 303	02 ^h 40 ^m 31. ^s 66 +61°13′45′6	B0V +NS?	2.0	26.5	_	Р	≥ 0.4	-	10-700	Prec?
V4641 Sgr	$18^{\rm h}19^{\rm m}21^{\rm s}48$ $-25^{\circ}25'36''0$	B9III +BH	~ 10	2.8	9.6	t	≥ 9.5	_	_	
LS 5039	18 ^h 26 ^m 15 ^s .05 -14°50′54.′′24	O6.5V((f)) +NS?	2.9	4.4	1 - 3	P	≥ 0.15	< 81°	10-1000	Prec?
SS 433	19 ^h 11 ^m 49 ^s 6 +04°58′58″	evolved A? +BH?	4.8	13.1	11±5?	P	0.26	79°	$\sim 10^4 - 10^6$	$^{ m Prec}$ XRJ
Cygnus X-1	19 ^h 58 ^m 21 ^s 68 +35°12′05″8	$ \begin{array}{c} O 9.7 Iab \\ +BH \end{array} $	2.5	5.6	10.1	P	_	40°	~ 40	
Cygnus X-3	$20^{\rm h}32^{\rm m}25^{\rm s}78$ $+40^{\circ}57'28''0$	WNe +BH?	9	0.2	_	Р	0.69	73°	$\sim 10^4$	

Paredes (2005)

Low Mass Microquasars

Low Mass X-ray Binaries (LMXB)										
Circinus X-1	15 ^h 20 ^m 40 ^s .9 -57°10′01′′	Subgiant +NS	5.5	16.6	_	t	> 15	< 6°	> 10 ⁴	
XTE J1550-564	15 ^h 50 ^m 58 ^s .70 -56°28′35″2	G8-K5V +BH	5.3	1.5	9.4	t	> 2	_	$\sim 10^3$	XRJ
Scorpius X-1	16 ^h 19 ^m 55 ^s 1 -15°38′25″	Subgiant +NS	2.8	0.8	1.4	Р	0.68	44°	~ 40	
GRO J1655-40	16 ^h 54 ^m 00 ^s .25 -39°50′45″0	F5IV +BH	3.2	2.6	7.02	t	1.1	72°-85°	8000	Prec?
GX 339-4	$17^{\rm h}02^{\rm m}49^{\rm s}.5$ $-48^{\circ}47'23''$	– +ВН	> 6	1.76	5.8±0.5	t	_	_	< 4000	
1E 1740.7-2942	17 ^h 43 ^m 54. ^s 83 -29°44′42.′′60	- +BH ?	8.5?	12.5?	_	Р	_	_	$\sim 10^6$	
XTE J1748-288	3 17 ^h 48 ^m 05 ^s .06 -28°28′25″8	– +BH?	≥ 8	?	> 4.5?	t	1.3	_	$> 10^4$	
GRS 1758-258	$18^{\rm h}01^{\rm m}12\stackrel{\rm s}{.}40$ $-25^{\circ}44'36''1$	– +BH ?	8.5?	18.5?	_	Р	_	_	$\sim 10^6$	
GRS 1915+105	19 ^h 15 ^m 11.55 +10°56′44.″7	K-M III +BH	12.5	33.5	14±4	t	1.2-1.7	766°-70°	$\sim 10-10^4$	Prec?

Galactic gamma-ray Microquasars

General Properties - Y ray production

•
$$p_{jet} + p_{wind} * \rightarrow \pi^0 \rightarrow 2\gamma$$

Leptonic Model

- ions accelerates leptons
- leptons rushes into photon/E/B field (of disk, star, jet)
- IC scattering,
 Bremsstrahlung,
 sychrotron
 radiation → γ

Fermi Galactic Microquasars: LS 5039

- HMXB
- P_{orb} = 3.9day, correlated in gamma-ray (GeV)
- Light curve characterized by a broad peak around superior conjunction, agree with IC scattering models.
- cutoff in the spectrum: indicative of magnetospheric emission similar to the emission seen in many pulsars by Fermi.

Fermi Galactic Microquasars: LS I +61 303

- HMXB: B0 Ve star
- Gamma ray timing variability correlates with P_{orb} = 26.6 day
- LC: a broad peak after periastron, a smaller peak before apastron →IC scattering
- no spectral change with orbital phase.
- perhaps not jet but pulsar wind (PWN-like in VLBA)

Fermi Galactic Microquasars: Cygnus X-3

- HMXB: companion
 V1521 Cyg -- WR star
- $P_{orb} = 4.8hr$, correlated in gamma-ray
- gamma-ray emission preceded flaring in the radio jet by roughly five days
- periodic radio outbursts with P = 367day: shock wave from a flare of 1/3 c.

Microquasar Jets or Pulsar Winds

Microquasars are powered by NS or stellar-mass BHs) via accretion from a companion. The jets boost the energy of stellar winds to the range of very energetic gamma-rays.

Microquasar Jets or Pulsar Winds

Pulsar winds are powered by rotation of neutron stars; the wind flows away to large distances in a comet-shape tail, as has been shown in to be the case for LS I +61 303. Interaction of this wind with the companion-star outflow may produce very energetic gamma-rays.

Microquasar Jets or Pulsar Winds

- Jet
- $e_{jet} + UV^* \rightarrow \gamma$
- $p_{jet} + p_{wind} * \rightarrow \pi^0 \rightarrow 2\gamma$
- CO closer to star: accretion rate 1
- $\gamma + \gamma_* \rightarrow e^{\pm}$

- Pulsar Winds
- $e_{pulsar wind} + UV^* \rightarrow \gamma$
- $p_{wind} + p_{wind} * \rightarrow \pi^0 \rightarrow 2\gamma$
- CO closer to star: wind more compressed
- $\bullet \quad \mathsf{V} + \mathsf{V}^* \to \mathsf{e}^{\pm}$

Dark Outflows and Super-Eddington Sources

Jet-powered nebula around Cygnus X-1 from Gallo et al.(2005).

Dark Outflows and Super-Eddington Sources

Image at 20cm of the nebula W50 that hosts SS 433, from Dubner et al. more than 50% of the energy is not radiated

more than 30% of the accreted mass is being ejected in the form of massive winds and relativistic jets

Disk-Jet Coupling

Superluminal ejection in GRS 1915+105

Disk-Jet Coupling

multiwavelength simultaneous observations of instabilities in the accretion disk and the genesis of jets

Microquasar-GRB connections

from the chemical composition found in the atmosphere of the donor star and runaway velocity of GRO J1655-40 it was proposed that the black hole in this microquasar was formed through a very energetic supernova.

Keep working, (to you all) make discoveries! (to microquasar) make jets!

~Thank you!~