

Two Instruments:

Large Area Telescope (LAT)

PI: P. Michelson (Stanford University) 20 MeV - 300 GeV >2.5 sr FoV

Gamma-Ray Burst Monitor (GBM)

PI: W. Paciesas (NASA/MSFC) Co-PI: J. Greiner (MPE) 8 keV – 40 MeV 9 sr FoV

Launch: June 11 2008 Lifetime: 5 years (req) 10 years (goal)

Gamma-ray Burst Monitor (GBM)

Large Area Telescope (LAT)

Private vs Public

- In the old days, you need to carry out the observations by yourself and all data are private.
- Archival data become popular in high-energy astrophysics community and it is now the norm for all major telescopes around the world.
- However, there is a proprietary period (usually I year) and you have to wait for the public release in order to analyse the data. Archival research is still very meaningful.
- Swift and Fermi completely change the rules of the game. All data are in public domain right after the observations.
- If you are quick enough, you can beat the instrumentation team.
- You need to be VERY careful in all the analysis.

🤗 💿 😪 🔥 http://www.astronomerstelegram.org/?disj	blayall	2 🗸	🔘 Go	G.] _
631 INTEGRAL observation of IGR J17269-4737 / XTE J1727-476	M. Turler, S. Paltani, N. Mowlavi (ISDC, Geneva) <i>16 Oct 2005; 13:49 UT</i>				
630 <u>Classification of SNe</u> 2005gl and 2005gm	The Nearby Supernova Factory: N. Blanc, S. Bongard, Y. Copin, E. Gangler, L. Sauge, G. Smadja (Institut 14 Oct 2005; 23:09 UT				
629 Infrared detection of XTE J1727-476=IGR J17269-4737	D.Steeghs, M.A.P.Torres (CfA), K.Koviak, P.McCarthy (OCIW), P.G.Jonker (SRON/CfA) <i>13 Oct 2005; 15:38 UT</i>				
628 RFO: <u>Optical Counterpart</u> of J1726-47	Dipankar Maitra, Bethany Cobb, Charles Bailyn, Jenica Nelan (Yale), David Gonzalez(CTIO/SMARTS) 12 Oct 2005; 23:19 UT				
627 M31 Optical Transient TSS J004420.7+412311	R. Quimby, M. Sellers, P. Hoeflich, J. C. Wheeler (University of Texas), and C. Gerardy (Imperial 12 Oct 2005; 19:30 UT				
626 Swift/XRT observations of XTE J1727-476/IGR J17269-4737	J. A. Kennea (PSU), D. Palmer (LANL), D. Burrows (PSU), N. Gehrels (GSFC) 12 Oct 2005; 17:58 UT				
625 <u>Swift Imaging</u> Observation of XTE <u>J1726-476/IGR</u> J17269-4737	Albert K.H. Kong (MIT) 12 Oct 2005; 16:48 UT				
624 RFO: <u>New X-ray transient</u> IGR J17269-4737 discovered with INTEGRAL	M. Turler (ISDC, Geneva); M. Cadolle Bel (CEA Sacaly); R. Diehl (MPE, Garching); NJ. Westergaard (DSRI 10 Oct 2005; 15:47 UT				
623 <u>New X-ray Transient, XTE</u> <u>J1726-476</u>	A. M. Levine (MIT), D. Lin (MIT), and R. A. Remillard (MIT), for the ASM team at MIT and NASA/GSFC 10 Oct 2005; 15:03 UT				
622 <u>Type-I X-ray bursts from</u> XTE J1739-285	S. Brandt (DNSC, Denmark), E. Kuulkers (ESA/ESAC, Spain), A. Bazzano (IASF/INAF, Rome), T.JL. Courvoisier 8 Oct 2005; 22:36 UT				
621 Radio Observations of SN2005bf	A. M. Soderberg, S. R. Kulkarni (Caltech) and D. A. Frail (NRAO) <i>6 Oct 2005; 20:28 UT</i>				
620 <u>Three Type Ia</u> <u>Supernovae: SN 2005eu,</u> <u>SNF20051003-003,</u> SNF20051004-001	The Nearby Supernova Factory: G. Aldering, S. Bailey, D. Kocevski, B. C. Lee, S. Loken, P. Nugent, S <i>6 Oct 2005;</i> 10:07 UT				

Tips to beat the big guys

- Work hard (Genius is 1% talent and 99% hard work -Albert Einstein)
- Identify a good strategy especially for time critical events
- Read the manuals; High-energy astrophysics community usually provides the best user manuals for their instrumentations.
- Read papers written by the instrumentation team.
- Read not only the users manuals, but also the calibration documents.
- Reproduce some known results and build up your confidence.

Image, Spectrum, and Lightcurve

Event List

- High-energy astronomers usually call their data as "event list".
- Event list contains spatial, spectral, and timing information of each photon. Therefore we can study the properties of every photon. This is called photon counting.
- It is unusual in optical astronomy. Why?
- It is common that we can have images, spectra, and lightcurves at the same time. For optical astronomers, they may have to replace their instruments to achieve this.

All-Sky Survey Mode vs Pointed Observation

- In survey mode, the LAT observes the entire sky every two orbits (~3 hours). Each point on the sky receives ~30 min exposure.
- For pointed observations, we can specify the targets and take a long exposure.
- For comparison, Chandra, XMM, Suzaku, and Swift are performing pointed observations.

FITS Data Files

- Standard format for astronomical data
- FITS stands for Flexible Image Transport System
- Designed to store scientific data sets consisting of multidimensional arrays such as:
 - I-D spectra
 - 2-D images
 - 3-D data cubes
 - Tables containing rows and columns of data

• "Header" to store information about the dataset

Three steps to produce data products

- gtselect [select region of interest (ROI), energy range, time range,....]
- gtmktime [select good time interval (GTI)]
- gtbin (image: count map; spectrum; lightcurve)

Source Finding

- To find a source in some images can be quite tricky especially in the Galactic plane.
- We need to subtract all known Fermi source and diffuse emission.
- We then look for excess in the source subtracted image (TS Map).

Image

TS map _____ (significance map)

M 62 354 353 Galactic longitude (deg) 355 356 352 351 sports deg? NOC 1 800 1000 100 1200 NGC 6440 B Galactic longitude (deg) controleg* ŧD

1800 3000 3008 4800

Abdo et al. 2010

TS Map

- TS map is probably one of the most time consuming processes in Fermi data analysis
- It is easy to take 12-24 hours to finish a stamp-size image (20x20 pixels). In my Terzan 5 paper, the map took almost a week with a MacPro.
- Four steps to produce a TS map. gtltcube (take ~3 hours); gtexpmap; define model file; gttsmap
- Ideally, TS map should be done after the spectral fitting because you then have better spectral parameters to describe all the nearby sources around the target.

gttsmap

Event data file[grs1915_0.2-100gti.fits] Spacecraft data file[L100618111030E0D2F37E49_SC00.fits] Exposure map file[expMap.fits] Exposure hypercube file[expCube.fits] Source model file[mymodel.xml] TS map file name[TSMap.fits] Response functions to use[P6 V3 DIFFUSE] Optimizer (LBFGS|MINUIT|DRMNGB) [MINUIT] Fit tolerance[le-05] Number of X axis pixels[20] Number of Y axis pixels [20] Image scale (in degrees/pixel)[0.2] Coordinate system (CEL|GAL) [CEL] X-coordinate of image center in degrees (RA or I)[288.798333] Y-coordinate of image center in degrees (Dec or b)[10.945556] Projection method (AIT|ARC|CAR|GLS|MER|NCP|SIN|STG|TAN) [STG]

Model File: terzan5model.xml

```
<source name=" IFGLJ1747.9-2448" type="PointSource">
    <spectrum type="PowerLaw2">
    <!-- Source is 0.0468385406389 degrees away from ROI center -->
        <parameter free="l" max="le4" min="le-4" name="Integral"</pre>
scale="le-07" value="0.135210926899"/>
        <parameter free="1" max="5.0" min="0.0" name="Index" scale="-1.0" value="2.35172"/>
        <parameter free="0" max="5e5" min="30" name="LowerLimit" scale="1.0"</pre>
value="1e3"/>
        <parameter free="0" max="5e5" min="30" name="UpperLimit" scale="1.0" value="1e5"/>
    </spectrum>
    <spatialModel type="SkyDirFunction">
        <parameter free="0" max="360.0" min="-360.0" name="RA" scale="1.0"</pre>
value="266.977"/>
        <parameter free="0" max="90" min="-90" name="DEC" scale="1.0" value="-24.8041"/>
    </spatialModel>
</source>
```