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Phases and phase transitions



Numerical simulations

“You let the computer solve the problem for you”

It’s not that easy:

Exponentially diverging number of states

Critical slowing down of the dynamics at phase transitions

negative sign problem for fermions (NP-hard)

✔

✔

✗



What is the probability to win in Solitaire?
Ulam’s answer: play it 100 times, count the number of wins and you 
have a pretty good estimate

Ulam: the Monte Carlo Method



The Monte Carlo Method

Need a representative sample with the correct distribution

fundamental problem of statistical mechanics
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In putting together this issue of Computing in 
Science & Engineering, we knew three things:
it would be difficult to list just 10 algorithms;
it would be fun to assemble the authors and
read their papers; and, whatever we came up
with in the end, it would be controversial. We

tried to assemble the 10 algorithms with the greatest
influence on the development and practice of science
and engineering in the 20th century. Following is our
list (here, the list is in chronological order; however,
the articles appear in no particular order):

• Metropolis Algorithm for Monte Carlo
• Simplex Method for Linear Programming
• Krylov Subspace Iteration Methods
• The Decompositional Approach to Matrix

Computations
• The Fortran Optimizing Compiler
• QR Algorithm for Computing Eigenvalues
• Quicksort Algorithm for Sorting
• Fast Fourier Transform
• Integer Relation Detection
• Fast Multipole Method

With each of these algorithms or approaches, there
is a person or group receiving credit for inventing or
discovering the method. Of course, the reality is that
there is generally a culmination of ideas that leads to a
method. In some cases, we chose authors who had a

hand in developing the algorithm, and in other cases,
the author is a leading authority.

In this issue

Monte Carlo methods are powerful tools for evalu-
ating the properties of complex, many-body systems,
as well as nondeterministic processes. Isabel Beichl and
Francis Sullivan describe the Metropolis Algorithm.
We are often confronted with problems that have an
enormous number of dimensions or a process that in-
volves a path with many possible branch points, each
of which is governed by some fundamental probability
of occurence. The solutions are not exact in a rigorous
way, because we randomly sample the problem. How-
ever, it is possible to achieve nearly exact results using a
relatively small number of samples compared to the
problem’s dimensions. Indeed, Monte Carlo methods
are the only practical choice for evaluating problems of
high dimensions.

John Nash describes the Simplex method for solv-
ing linear programming problems. (The use of the
word programming here really refers to scheduling or
planning—and not in the way that we tell a computer
what must be done.) The Simplex method relies on
noticing that the objective function’s maximum must
occur on a corner of the space bounded by the con-
straints of the “feasible region.”

Large-scale problems in engineering and science of-
ten require solution of sparse linear algebra problems,
such as systems of equations. The importance of iter-
ative algorithms in linear algebra stems from the sim-
ple fact that a direct approach will require O(N3) work.
The Krylov subspace iteration methods have led to a
major change in how users deal with large, sparse, non-
symmetric matrix problems. In this article, Henk van
der Vorst describes the state of the art in terms of
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The Metropolis Algorithm (1953)





The Metropolis Algorithm (1953)
creates a representative sample for any system

start with a configuration i

propose a small change to a configuration j
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Feynman (1953) lays foundation for quantum Monte Carlo
Map quantum system to classical world lines

Quantum Monte Carlo
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quantum mechanical

world lines
space

classical

particles

Use Metropolis algorithm to update world lines



Autocorrelation effects

The Metropolis algorithm creates a Markov chain of configurations

successive configurations are correlated, leading to an increased 
statistical error

Critical slowing down at second order phase transition

Exponential tunneling problem at first order phase transition

� 

c1 → c2 → ...→ ci → ci+1 → ...

� 

ΔA = A − A( )2 = Var A
M

(1+ 2τA )

� 

τ ∝L2

� 

τ ∝exp(Ld−1)



Modern algorithms
Critical slowing down at a 2nd order phase transition is 
solved by changing the dynamics: make large global changes

Swendsen and Wang, 1987; Evertz et al, 1993; Prokof ’ev et al, 1998 ...

Tunneling problem at a first order phase transition is solved 
by changing the ensemble to create a flat energy landscape

Berg & Neuhaus, 1992; Wang & Landau, 2001; Troyer et al, 2003 , ...

? ?
liquid solid



30 years of simulating the Ising model by D.P. Landau
Today’s algorithms on 30 year old computers 
faster than 30 year old algorithms on today’s computers

Improvements in simulation methods
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Modern algorithms for quantum systems

Larger systems at lower temperature allow accurate 
simulation of phase transitions in quantum systems

Temperature Metropolis Modern algorithms

J 16’000 spins 16’000’000 spins

0.1 J 200 spins 1’000’000 spins

0.005 J ––– 50’000 spins

0.1 t 32 lattice bosons 10’000 lattice bosons

50 mK 800 He atoms 8’000 He atoms



Experiments on the computer

Modern QMC algorithms allow accurate simulation of 
quantum many body problems: experiments on models

Example:  the search for the supersolid 

lattice supersolids

is solid Helium 
a supersolid?



Supersolid

A supersolid is simultaneously
superfluid: broken gauge symmetry

solid: broken translational symmetry

First proposals nearly as old as I am
A. F. Andreev and I. M. Lifshitz, Sov. Phys. JETP 29, 1107 (1969).

G. V. Chester, Phys. Rev. A 2, 256 (1970).

but not seen in Nature yet



Super solids in lattice boson models
The simplest proposals are lattice models:
Square lattice hardcore bosons with repulsion

solid (crystal)
caused by large V

doped solid:
interstitials

supersolid:
superfluid interstitials

H = −t
∑

〈i,j〉

(a†
iaj + a

†
jai) + V

∑

〈i,j〉

ninj



First simulation results: it exists!

Batrouni, Scalettar, Zimanyi, Kampf, PRL (1995)
evidence for supersolid at 3% doping
finite superfluid density and solid structure factor



2D Bosons with nearest neighbor repulsion
mean-field calculations found supersolid
previous simulations (32 particles) found supersolid
new simulations (5000 particles) instead show phase 
separation at first order phase transition

Do lattice supersolids exist?

0.650.60.550.5
Density ρ

solid

superfluid



Supersolids versus phase separation

solid doped solid supersolid

∆ε = −ρ
2t2

V

doped particles gain energy 
by forming a domain wall

∆ε = −ρt < −ρ
2t2

V



Stabilizing the supersolid
add next nearest neighbor hopping: H̃ = H − t

′
∑

〈〈i,j〉〉

(a†
iaj + a

†
jai)

E = −ρ4t′

form a striped solid 
by longer range repulsion

Batrouni et al, PRB 1995
Batrouni and Scalettar, PRL 2000
Hebert et al, PRB 2002
Schmid et al, PRL 2002
Schmid and Troyer, PRL 2004

use a triangular lattice

Wessel and Troyer, PRL 2005
Melko et al, PRL 2005
Heidarian and Damle, PRL 2005
Boninsegni et al, PRL 2005

Sengupta et al, PRL 2005



Continuum supersolids
Supersolidity due to superflow of vacancies in solid

A. F. Andreev and I. M. Lifshitz, Sov. Phys. JETP 29, 1107 (1969).
G. V. Chester, Phys. Rev. A 2, 256 (1970). 

A related scenario proposed recently by 
X. Dai, M. Ma, F.-C. Zhang, Phys. Rev. B 72, 132504 (2005)
P.W. Anderson, W.F. Brinkman and D.A. Huse, Science 310, 1164 (2005).



Experiment by Kim and Chan

Reproduced by
A. S. Rittner and J. D. Reppy, PRL (2006)
M. Kubota et al., unpublished (2006)
K. Shirahama et al., unpublished (2006).

E. Kim and M.H.W. Chan
nonclassical moment of inertia
Nature, 427, 225 (2004)
Science 305, 1941 (2004)



Vacancies and interstitials are gapped
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Theories : overview
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Phase separation of vacancies
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Strong attraction between vacancies
Vacancies phase separate: solid Helium is not supersolid 

Quantum: M. Boninsegni, A. Kuklov, L. Pollet, N.V. Prokof ’ev, B.V. Svistunov, M. Troyer, PRL 2006
Classical: Tama Ma (HKU), L. Pollet and M. Troyer, in preparation



Instability of the supersolid

Theory of supersolid is based on dilute gas of bosonic vacancies
stability of a Bose-Einstein condensate requires repulsive interactions
unstable in Helium due to attractive interaction between vacancies

Future challenges:
what is “wrong” with the Helium potential?
which potential could give a supersolid?
what is seen in the Kim & Chan experiment?
maybe due to superflid grain boundaries? (simulation and experiment)



Points on exchange cycles indicate superfluid regions

superfluid
grain boundary

superfluid superfluid

insulating solid

insulating solid

Simulation of grain boundary



Future challenges for simulations

Dynamics of quantum systems
Monte Carlo simulations perfect for static equilibrium properties
Dynamic properties and non-equilibrium effects are hard to obtain

Entropy-driven phase transitions
It is hard to form a single crystal from a liquid in experiment
Even harder to form a single crystal from a liquid in simulations

Fermionic simulations
The infamous negative sign problem prevents accurate simulations 
of fermions



In mapping of quantum to classical system

there is a “sign problem” if some of the pi < 0
Appears e.g. in simulation of fermions when two fermions exchange 
places, since the sign of the wave function changes (Pauli principle) 

The negative sign problem

Z = Tre−βH
=

∑

i

pi

|i1>

|i2>

|i3>

|i4>

|i1>

30



Sample with respect to absolute values of the weights 

Exponentially growing cancellation in the sign

Exponential growth of errors

NP-hard problem (no general solution) [Troyer and Wiese, PRL 2005]

The negative sign problem
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How to overcome the sign problem

Full solution is impossible

Exact solution in one dimension and small clusters
exact diagonalization of up to about 30-40 sites
density matrix renormalization group method on 1000 sites in 1D

Approximate solutions in higher dimensions
Dynamical mean field theory embeds a small cluster in a self-
consistent bath: can model the Mott-transition well
Variational Monte Carlo methods, such as fixed-node approximation, 
can work well but it is hard to unambiguously establish the existence 
of new exotic phases

Improved algorithms and new ideas are needed
32



Example: new DMFT solvers

Substantial progress is still possible
Standard method: Hirsch & Fye, PRL ’86

New weak coupling expansion: Rubtsov et al, PRB ’05

New hybridizaton expansion: Werner et al, PRL ‘06 

New methods allow
100 x lower temperatures
accurate investigation of
Mott transition
and more to come ...
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Computational Physics

34

Computational Physics has become an important branch of 
physics, complementary to experiment and theory

Perform “experiments on a model”

Experiment Theory

Simulation



Summary
Modern algorithms allow accurate simulations of phase 
diagrams and phase transitions of many quantum models
But substantial challenges remain

dynamics
entropy-driven phase transitions
fermionic simulations

Example: the search for a supersolid
lattice supersolids can be realized using 
ultracold polar molecules in triangular optical lattices
Helium-4 is according to our simulations not a supersolid:
defects play an important role in experiments
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