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 nonequilibrium quantum phase transitions 

 Equilibrium magnetic quantum phase transitions 
in itinerant magnets; Hertz-Millis-Moriya theory

 Open system; steady state nonequilibrium state
 Development of renormalization group scheme

 Study of universality classes 
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Equilibrium quantum phase transitions

 Phase transitions at T=0 tuned by control parameters 
(e.g. pressure, magnetic fields, chemical doping) 

Change in broken symmetries at a quantum critical point

Motivation

Hertz pioneered in the study of ferromagnetic quantum 
phase transition in thermal equilibrium. Millis later revisited 
the problem noting that temperature is a relevant 
perturbation.

Open question: How does a system, 
tuned at a quantum critical point, 
behave as an applied voltage drives it 
into a non-equilibrium steady state? 

Forecast: One can expect non-linear external perturbation to 
have a similar role to temperature in the equilibrium case. 

Decoupling of statics and dynamics should result because non-equilibrium 
perturbations typically destroy phase coherence. Strong departures from equilibrium 
should force the system to regain its effective dimensionality of d. 



Equilibrium quantum phase transitionsQuantum criticality:  presence of 

singular  fluctuations of the OP in 

space and time.

Temperature is not a tuning 

parameter, but a finite size effect:

“singularity in the phase diagram”.

Need for new theories - a new 

conceptual and computational

infrastructure for understanding

highly correlated materials.

Experiment a vital component in 

elucidating the key physics of the 

QPT - need for new materials, new 

precision measurements. 

36

• Quantum criticality: meaning and challenge.

• Observations in Heavy Fermion Systems.

• Break down of the standard model

• Local and deconfined quantum criticality.
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Spatial and Temporal fluctuations 
are coupled in 

quantum phase transitions

Effective dimensionality 

deff = d + z > d

τ ∝ ξz

t

x y



Fermi Liquid Theory and Quasiparticle Picture

Landau, JETP 3, 920 (1957)

Landau: interactions  can be turned on 
adiabatically, preserving the excitation  
spectrum.

Interactions
adiabatically

- -

“Quasiparticle”
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Landau, JETP 3, 920 (1957)

Landau: interactions  can be turned on 
adiabatically, preserving the excitation  
spectrum.

Interactions
adiabatically

- -

“Quasiparticle”
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 Breakdown of Landau Fermi Liquid Theory

 Quantum Critical Point

Singular Fermi
     Liquid

T

What happens when the interaction becomes too 

large ?

0
Ordered State.Fermi Liquid

Xc X = P,H . . .

∞

QCP Hertz, 1976
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Pc P

AFM

metal

Heavy Fermion
Materials

H. Von Lohneyson (1996)

Quantum Criticality: 

divergent specific 

heat capacity

Quantum Critical

Point

ρ = AT 1+ε
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Theory of Quantum Criticality in Equilibrium
Itinerant Magnetic Phase Transitions

Effective field theory of the order parameter in 
d+z dimensions (effective space-time dimensions)

ω ∝ q
z

Γ(q) ∝ constant

Clean/Dirty Ferromagnet (z=3,4)

Open System (z=2)

τ ∝ ξz

δ = 1 − UN(0)

Stoner parameter

Seff =
∑
q,ω

χ−1(q, ω)|#m(q, ω)|2 + u

∫
ddx dt [#m(x, t)]4

F =

∫
d

d
x

(
[∇!m(x)]2 + δ[!m(x)]2 + u[!m(x)]4

)
(c.f. Landau free energy)

χ−1(q, ω) = −i
ω

Γ(q)
+ q2 + δ

Γ(q) ∝ q, q
2



deff > 4 deff < 4

● Renormalization Group Analysis;
quartic term is irrelevant (           ); relevant (           )

● T is a relevant perturbation

Thermal fluctuations decouple the dynamics and 
statics - classical transitions in d-dimensions

dT (b)

d ln b
= zT (b)

T =

(
δ − δc

u

)z/(d+z−2)

T = (δ − δc)
z/2

ordered phase

2 < d < z + 2

quantum

gaussian 
classical

quantum 
critical

ξ = ξ(T ) ∝ T−α

T

δδc
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 The fields which drive the system out of equilibrium 
typically increase its energy and destroy phase coherence; 

this may be analogous to temperature ?
similarity between non-equilibrium transitions and 

thermal transitions ? 

General Consideration

Motivation

Hertz pioneered in the study of ferromagnetic quantum 
phase transition in thermal equilibrium. Millis later revisited 
the problem noting that temperature is a relevant 
perturbation.

Open question: How does a system, 
tuned at a quantum critical point, 
behave as an applied voltage drives it 
into a non-equilibrium steady state? 

Forecast: One can expect non-linear external perturbation to 
have a similar role to temperature in the equilibrium case. 

Decoupling of statics and dynamics should result because non-equilibrium 
perturbations typically destroy phase coherence. Strong departures from equilibrium 
should force the system to regain its effective dimensionality of d. 

T
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µL µR

V = µL − µR

V ??

 The fields which drive the system out of equilibrium 
typically increase its energy and destroy phase coherence; 

this may be analogous to temperature ?
similarity between non-equilibrium transitions and 

thermal transitions ? 



 Departures from equilibrium may also break basic 
symmetries (e.g. time reversal invariance, spatial 

symmetries such as rotation and inversion)

General Consideration

 These new effects may change the critical behavior.



What problems do we want to solve ?

 Theory of nonequilibrium quantum criticality in 
itinerant electron systems

Open systems coupled to reservoirs - 
non-conserved order parameter;  

nonequilibrium by differences between reservoirs -
time-independent drive and steady state

J

 left lead  right lead
µL µR

V = µL − µR



2D interacting 
electron system

2

V

Left Reservoir Right Reservoir

z

x
y

Interacting electron system

FIG. 2: Schematic view of systems studied: central region
with interacting electron physics leading to critical behavior,
coupled to two leads.

may be periodic in time (quasiperiodic or chaotic solu-
tions seem possible in principle, but we have not encoun-
tered these so far).

One may calculate expectation values by use of a gen-
erating functional Z of source fields, η, defined as a path
integral on the Keldysh two-time contour3,17,18. We for-
mally integrate out all of the degrees of freedom except
those connected with long wavelength order parameter
fluctuations, introducing a wavevector cutoff Λ (as with
equilibrium critical phenomena the precise manner in
which the cutoff is imposed is not important) and de-
note the modes we retain by m(x, t). We then obtain3,18

Z(η) =
∫
D[mi, mf ]ρSS,Λ (mi, mf )

∫ ′

D[m+(t), m−(t)]

eSK [{m+,m−,η}] (1)

Here m± are the fluctuating order parameter fields of in-

terest and
∫ ′

D[{m+(t), m−(t)}] denotes an integral over
all paths in function space beginning at mi on the +
contour at t = 0 and ending at mf at t = 0 on the
− contour. The contributions of paths involving dif-
ferent endpoints weighted by the steady-state reduced
density matrix ρΛ[{mi(x), mf (x)}], whose diagonal ele-
ments describe the probability that at an instant of time
the long wavelength components of the order parame-
ter field take the configuration m(x). One may classify
phases by examining limΛ→0ρΛ. In the paramagnetic
phase, ρΛ→0 = δ(m), whereas in a broken symmetry
phase ρΛ→0 = δ(m − m̄(h)) with ordered moment m̄ de-
pendent on the direction of the symmetry breaking field
h. ρSS,Λ obeys a kinetic equation which may be deter-
mined from the requirement that correlation functions
calculated from Eq 1 are causal, and that in particular
integrals over negative times are convergent. One dis-
tinguishes ordered and disordered phases by the Λ → 0
behavior of ρ and constructs a renormalization group as
usual by integrating out modes near the cutoff and rescal-
ing.

We apply the formalism to magnetic transitions in sys-
tems coupled to reservoirs. We consider three cases: i:
a two dimensional itinerant Ising magnet placed between
two noninteracting leads, with current flowing across the

system (cf Fig ??, panel a), ii an Ising magnet with cur-
rent flowing in one of the extended dimensions of the
system (cf Fig ??, panel b)iii a Heisenberg magnet in
the geometry of Fig ??, panel a. In the first case, the im-
portant effect of nonequilibrium is a decoherence. In the
second case, symmetry allows a coupling of the current
flow to the fluctuations of the order parameter. In the
third case, a nontrivial dynamical transition may occur.

We begin with the first case, which we model by the
Hamiltonian

H = Hlayer + Hmix + Hleads (2)

Hlayer =
∑
i,δ,σ

tδc
†
i+δ,σci,σ + Hint (3)

Hmix =
∑

i,k,σ,b=L,R

(
Γk

b c†i,σai,k,σ,b + h.c.
)

(4)

We assume that the combination of the band structure
implied by t and the interactions Hint would be such as to
favor ferromagnetism in an isolated layer. The lead elec-
trons are described by operators a and have free fermion

correlators
〈
a†

bab

〉
= fb with fb a fermi function with

lead-dependent chemical potential µb.
We first review the properties of the noninteracting

model. The presence of the leads means that neither
particle number nor magnetization is conserved. Mathe-
matically, the presence of the leads implies that the Green
functions describing the propagation of electrons in the
interacting layer are

GR(p, ω) =
1

ω − εp − ΣR(p, ω)
=

(
GA

)∗
(5)

GK(p, ω) =
ΣK(p, ω)

(ω − εp − ReΣR(p, ω))2 + |ImΣR(p, ω)|2
(6)

where ΣK = −2i
∑

a=L,R Γa(p, ω) (1 − 2f(ω − µa)) ex-
presses the current flow across the system, Γa(p, ω) gives
the rate at which electrons escape from the active layer
into the lead a and ImΣR =

∑
a Γa. We shall be most

interested in excitation energies less than Γa and mo-
menta less than vF /ImΣR where the nonconservation
due escape into the leads is dominant. In this limit the
polarizibilities are

ΠR(q, Ω) = Π0 + N0

(
−iΩ

γ
+ ξ2

0k2 + ..

)
(7)

ΠK(q, Ω) = −2iN0

∑
ab

|Ω + µa − µb|

γab
(8)

Here N0 is a fermi surface averaged density of states
while γ−1 = 〈N0/Γ(k, Ω = 0)〉 |FS and (γab)−1 ==〈
N0Γa/Γ(k, Ω = 0)2

〉
|FS are fermi surface averaged de-

cay rates.
The essential result of these considerations is that the

departures from equilibrium do not change the symme-
tries characterizing the spatial structure of the problem,

2D Itinerant electron system coupled to two 3D leads

Let us consider the ISING limit (longitudinal magnetization)

Hmix =

∑
i,k,σ,b=L,R

(
tk,bc

†
i,σai,k,σ,b + h.c.

)J
µL

µR

V = µL − µR

 left lead  right lead



Goals
Difficulty in the formalism: Hertz-Millis-Moriya theory 

is based on a quantum generalization of the 
Landau-Ginzberg free energy. 

But free energy is an equilibrium concept.

Find a way to express nonequilibrium problems 
in a Feynman path integral form; 

sum over histories on the Keldysh time contour

Determine the nature of quantum phase transition;
determine dynamic and static universality classes;

generalize renormalization group scheme 
to nonequilibrium systems



Keldysh Path Integral Formalism
Equilibrium field theory is based on the crucial 

assumption that the asymptotic state in the distant past 
(initial state) and distant future are identical 

Out of equilibrium this assumption is invalid and 
we have no knowledge of the asymptotic state in 

the distant future

Keldysh approach; let the quantum system evolve forward 
in time then rewind its evolution back;

then no knowledge of the distant future is necessary

Keldysh path integral formalism

Equilibrium field theory depends on the crucial assumption 
that the ground state of the system in the distant past and in 
the distant future are identical. Out of equilibrium, this 
assumption is invalid and we have no knowledge of the 
ground state in the distant future. 

Central idea: Let the quantum system evolve forward in 
time then rewind its evolution back. Contour now has 
two branches, the forward and the backward branches.

Consequences: 

No knowledge of the ground state in the distant future is necessary.
We need more Green functions.

switching of interactions in the future. Both switchings on and off take place in the past: on – on the forward branch
and off – on the backward. How to construct such a theory and how to use it – is the subject of this chapter.

C

t8 8

+!
FIG. 1 The closed Keldysh time contour C. Dots on the forward and the backward branches of the contour denote the discretized
time points.

4. Field theory. To be specific, let me consider the simplest possible many–body system. It consists of bosons living
in a single quantum state with the energy ω0:

H = ω0a
†a ; (1)

here a† and a are bosonic creation and annihilation operators. Let us consider the ”partition function” defined as

Z = Tr{ρ0UC}/Tr{ρ0} , (2)

where UC is the evolution operator along the closed contour C. If we assume (as we shall do for a while) that all
the external fields are exactly the same on the forward and backward branches of the contour, then UC = 1 and
therefore Z = 1. In Eq. (2) ρ0 = ρ(H) is some 1 density matrix operator defined at t = −∞. In our example
Tr{ρ0} = [1 − ρ(ω0)]−1. An important point is that in general Tr{ρ0} is an interaction– and disorder–independent
constant. Indeed both interactions and disorder are supposed to be switched on (and off) on the forward (backward)
parts of the contour sometime after (before) t = −∞. I shall therefore frequently omit this constant or refer to it as
being unity – it never causes a confusion.

The next step is to divide the C contour into 2N + 1 time steps of the length δt, such that t1 = t2N+1 = −∞ and
tN+1 = +∞ as shown on Fig. 1. Following the standard route [19], we obtain the coherent state functional integral,
by introducing a resolution of unity at each time step. Taking the N → ∞ limit we obtain for the partition function

Z =
1

Tr{ρ0}

∫
Dφ̄φ exp{iS[φ̄(t), φ(t)]} , (3)

where the action is given by

S[φ̄(t), φ(t)] =

∫
C

dt φ̄(t)D−1φ(t) , (4)

and D−1 = [i∂t − ω0]. It is important to remember that this continuous notation is only a short way to represent the
2N × 2N matrix D−1

ij

1To accommodate the equilibrium initial density matrix, ρ0 = exp{−β(H − µN)}, it is sometimes suggested to add an
imaginary (vertical) part to the Keldysh contour at t = −∞. To my opinion this procedure only obscures the structure of the
theory. Indeed, the technique is not restricted in any way to the initial distribution being the equilibrium one. Therefore it is
much preferred to keep the structure general and not commit oneself with unnecessary assumptions.
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Keldysh Path Integral Formalism

Density matrix

Nonequilibrium quantum criticality in open electronic systems

Aditi Mitra, So Takei, Yong Baek Kim
Department of Physics, University of Toronto, 60 St. George Street, Toronto, ON, Canada

A. J. Millis
Department of Physics, Columbia University, 538 W. 120th Street, New York, NY 10027 USA

(Dated: May 4, 2006)

A theory is presented of nonequilibrium quantum criticality in open (coupled to reservoirs) elec-
tronic systems. Results are given for itinerant Ising and Heisenberg magnets with nonequilibrium
provided by current flow across the system. Both departures from equilibrium at conventional (equi-
librium) quantum critical points and the physics of phase transitions induced by the nonequilibrium
drive are treated.

The study of quantum phase transitions is by now a
well-established subfield of condensed matter physics1,2.
A central issue is the behavior of systems as one tunes
parameters (for example pressure, or magnetic field) so
as to change the broken symmetries characterizing the
ground state of the system (for example, from ferromag-
netic metal to paramagnetic metal). The parameter val-
ues at which the ground state broken symmetries change
define a quantum phase transition point (quantum criti-
cal point). The non-commutativity of position and mo-
mentum in quantum mechanics means that at quantum
phase transitions, spatial and temporal fluctuations are
coupled, so that continuous quantum phase transitions
in equilibrium systems are typically described by critical
theories involving an effective dimensionality deff greater
than the spatial dimensionality d.

Essentially all of the work so far on quantum phase
transitions has focussed on systems which are in ther-
mal equilibrium (or are in the T → 0 limit of an equi-
librium system). An important and largely open class
of questions concerns the effect of departures from equi-
librium, both in the sense of the nonlinear response at
an equilibrium quantum critical point and in the sense
of the physics of phase transitions driven at T = 0 by
departures from equilibrium. The fields which drive a
system out of equilibrium typically increase its energy
and destroy its phase coherence, so that departures from
equilibrium are analogous to temperature, so that one ex-
pects a similarity between nonequilibrium transitions and
thermal transitions. However, departures from equilib-
rium will in general also break basic symmetries including
time reversal invariance and (depending on the manner
in which the perturbation is applied) spatial symmetries
such as rotation and inversion, and in addition may drive
the system into a coherent time-dependent state. These
new effects may change the critical behavior.

The theoretical machinery for addressing nonequilib-
rium quantum critical phenomena is not well developed,
in part because the theory for equilibrium systems is
based on analysis of the partition function, a fundamen-
tally equilibrium concept. In this paper we use theoreti-
cal ideas previously developed3 in the context of nonequi-
librium quantum impurity models to formulate a theory
of nonequilibrium quantum criticality in itinerant elec-

!
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Teff=
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FIG. 1: Schematic phase diagram in plane defined by equilib-
rium distance from criticality, δ, and departure from equilib-
rium V .

tron systems. We show how the problem may be ex-
pressed as a functional integral, distinguish different uni-
versality classes of nonequilibrium criticality, and for sim-
ple cases display both the exponents characterizing the
relevance of departures from equilibrium at an equilib-
rium criticial point and the exponents characterizing in-
trinsically nonequilibrium phase transitions.

We consider open systems coupled to reservoirs with
which particles may be exchanged and with nonequilib-
rium imposed by differences between reservoirs; our sys-
tems are therefore subject to a time-independent drive,
and are not characterized by any conserved quantities.
An alternative method for imposing a nonequilibirum
state is to apply a time-dependent field to a closed
system5,6; in this case the time dependence of the drive
and the presence of conservation laws may play impor-
tant roles. Extension of our results to this case is an
important unsolved problem.

Analysis of nonequilibrium systems proceeds from the
time dependent density matrix, ρ̂(t) defined in terms of
a Hamiltonian Ĥ and an initial condition ρ̂(tinit) via

ρ̂(t) = e−iĤ(t−tinit)ρ̂(tinit)eiĤ(t−tinit). We are interested
in systems in which the system reaches a well defined
long-time state defined by a density matrix ρ̂SS indepen-
dent of the initial condition ρ̂0. (To select this state when
symmetry breaking occurs we include in Ĥ an infinites-
imal symmetry breaking field). In some cases the long-
time state is time-translation invariant; in other cases it

Keldysh generating functional

t
+∞−∞

Electrons may be integrated out; Keldysh path integral in terms 
of order parameter fields on the forward and backward paths

m
−

m+

mi

mf

ZK = Tr[ρ(t)]

ZK ∼

∑

all config. of m+,m
−

e
SK [each config. of m+,m

−
]



Effective Field Theory
Integrate out electronic degree of freedom and 

obtain an effective field theory of order parameter

3

but do change the time dependence: out of equilibrium
µa != µb,ΠK(Ω = 0) != 0. This will be crucial in what
follows.

We now follow the usual procedure in studies of criti-
cal phenomena, writing the model as a path integral, de-
coupling the interaction via Hubbard-Stratonovich fields,
integrating out the electronic degrees of freedom and ob-
taining a theory involving only the field m correspond-
ing to long wavelength fluctuations of the order parame-
ter. We now expand, assuming all field configurations
are close to one of the configurations selected by the
Λ → 0 limit of the density matrix ρ. For ease of writ-
ing we choose the paramagnetic phase m = 0, but the
extension to ordered phases is immediate. We obtain
SK = S(2) + S(4) + ... where

S(2) = −i
∫

dt
∫

dt′
∫

ddr
∫

ddr′
(
mcl(t, r) mq(t, r)

)
(

0
[
χ−1

]A[
χ−1

]R [
χ−1

]K

)(
mcl(t′, r′)
mq(t′, r′)

)
(9)

S(4) = −i8u
∫

dt(ddx)mqmcl

(
m2

q + m2
cl

)
where mq = m−−m+

2 , mcl = m−+m+

2 , and the ellipsis
denote higher order terms. The χ−1 are given by Eqs
7,8 but with the constant Π0 replaced by a small quan-
tity δ which vanishes as criticality is approached. The
key quantity is χ−1

K = ΠK , which carries the informa-
tion about departures from equilibrium. In equilibrium
systems at T = 0, χ−1

K (t) vanishes rapidly at long times
(as a power law for models of gapless fermions); however
at T = 0 and (for all of the models we have studied)
out of equilibrium χ−1

K (t → ∞) != 0. This expresses the
physical effect of decoherence: mathematically, it forces
the correlations in time to be short range, thereby decou-
pling the spatial and temporal fluctuations. Further, Eq
9 shows that the magnitude of χ−1

K controls the fluctu-
ations of the quantum field mq; the non-vanishing long
time limit therefore drives a crossover to effectively clas-
sical physics.

One technical remark is needed. In the exact the-
ory the 〈mclmcl〉 correlator must vanish identically at
all times. This property follows from the causality prop-
erties of the functions involved, if all frequencies are re-
tained. In a theory with a frequency cutoff, care must be
exercized (for example, by introduction of appropriate
counterterms) to ensure that the cutoff does not violate
the causality requirements. We find it simpler to work
with a theory with a momentum cutoff but no frequency
cutoff.

We are now in a position to formulate a renormaliza-
tion group treatment, following along the usual lines: we
choose a b > 1 and in Eq 9 integrate out those fluctu-
ations with momenta between Λ and Λ/b, treating the
interactions perturbatively. In order to preserve causal-
ity we integrate over all frequencies. After this we do
the following change of variables for the momenta and
frequency, q = q′/b, and ω = ω′/bz, while the fields
are rescaled to mcl,q → m′

cl,qb
1+(d+z)/2. These change

of variables ensure that the coefficient of q2 in the off-
diagonal terms in the quadratic part of Eq. 9 remain
unchanged. In order to keep the diagonal term (in Eq. 9)
unchanged, the voltage difference V has to be rescaled
such that,

dV (b)

d ln b
= zV (b) (10)

In addition, the renormalization of the gap δ and the
interaction term u has the form

dδ(b)

d ln b
= 2δ(b) + 12u(b)f (2) [V [b]] (11)

du(b)

d ln b
= [4 − (d + z)]u(b) − 18u2(b)f (4) [V (b)]

(12)

where

f (2)[V (b)] =
∫ ∞
0

dω
π χK(k = Λ(b), ω) (13)

f (4)[V (b)] =
∫ ∞
0

dω
π χK(k = Λ(b), ω)[

χR(Λ(b), ω) + χA(Λ(b), ω)
]

(14)

GIVE EXPLICIT RESULTS FOR F2 AND F4 FOR
THE ISING CASE.

At scales larger than the scale set by V the equations
are just the z = 2, d = 2 equations considered previously.
The key result14 is that the interaction is marginally ir-
relevant and the mass varies as |V |ln|V |. We therefore
conclude that for this problem the departures from equi-
librium enter as an effective temperature.

We may now use the standard arguments to estimate
the voltage at which a magnetically ordered state is
destroyed. A difference from the equilibrium case is the
presence, for systems without a left-right symmetry, of
a non-universal term linear in the voltage difference, so
that the location of the transition depends on the sign of
the voltage. The fact that voltage enters essentially as an
effective temperature suggests that the transtion should
be in the same universality class as the classical d = 2
Ising thermal transition. To make this more precise,
we note that at large voltage we may integrate out the
quantum field. this is most easily done via introduction
of a Hubbard-Stratonovich field ξ(&q, ω) in Eq. 9, and
treating the interaction term within a Hartree approxi-
mation, so that ZK =

∫ ∏
#q D [mcl, mq]Dξ exp SK with

SK = −i
N

∑
#q

∫
dω
2π

ξ(#q,ω)∗ξ(#q,ω)
[χK(#q,ω)]−1 + {ξ(&q, ω)∗mq(&q, ω) +

mq(&q, ω)∗
([

χ−1
]R

+ 4u〈m2
cl〉

)
mcl(&q, ω) + h.c.} The

equation of motion for the classical field obtained
from minimizing the above action with respect to the
quantum field leads to the Langevin equation,[[

χ−1
]R

+ 4u〈m2
cl〉

]
mcl(&q, ω) = −ξ(&q, ω) (15)

where the statistics of the noise term ξq is determined
by the Keldysh response function, −i〈ξ(q, ω)ξ(q′, ω′)〉 =

3

SK = S(2) + S(4) + ... where

S(2) = −i

∫
dt dt′

∫
ddr ddr′

(
mcl(t, r), mq(t, r)

) (
0

[
χ−1

]A[
χ−1

]R [
χ−1

]K

)(
mcl(t′, r′)
mq(t′, r′)

)
(2)

Here χ−1
R/A are the usual retarded and advanced polarizibilities corresponding to the Gaussian (u = 0) model. These

quantities may be expanded in powers of distance from criticality and take the forms (determined by symmetry)
familiar from equilibrium systems. The models we study here have no conserved quantities so we expect relaxational
dynamics. For example, for an Ising system we have

[
χ−1

]R
=

[
χR

]−1
= δ(V, T ) + ξ2

0(V, T )k2 − i
ω

γ(k, V )
(3)

[
χ−1

]K
= −2i

∑
αβ

ΓαΓβ

Γ2
coth

ω + µα − µβ

2T

(ω + µα − µβ)

γ(k, V )
(4)

with δ dependent on parameters including temperature and voltage and vanishing at critical points and γ a coefficient
characterizing the dissipation.

The quantity
[
χ−1

]K
carries the information concerning decoherence induced by temperature and voltage. In

bosonic systems or fermionic systems with a gap, it vanishes rapidly at long times. In gapless fermionic systems
in equilibrium, its long time behavior is (t1 − t2)−2. However, at T > 0 or out of equilibrium, the long time limit
does not vanish, forcing the correlations in time to be short ranged and thereby decoupling the spatial and temporal
fluctuations. In frequency space we have

= 0 gapped

i
[
χ−1

]K
∝ |ω| gapless fermi T = 0 (5)

∝ const T #= 0 or V #= 0 (6)

with ”const” ∼ max(T, V ). Note that Eq. 6 also implies that at zero temperatures and nonequilibrium, and as long as
we are probing the system at low frequencies ω < V , the system appears to obey a generalized fluctuation dissipation
theorem with an effective voltage dependent temperature. Decay in the time evolution operator SK : Note that[
χ−1

]K
contributes to the decay in SK , where the strength of the decay increases either with temperature and/or

voltage. Since the decay is proportional to square of the fluctuations in the quantum field, this goes to show that high
temperatures and/or voltage give the classical limit where the time evolution is identical along the time and anti-time
ordered contours. The quantum-classical crossover effect is easily seen in perturbative computations. For example,
the correction to u obtained to second order is

δu = u2

∫
d1d2χK(2 − 1)(χR(1− 2) + χA(1− 2)) (7)

Use of Eq 4 yields

δu ∼ u2

∫
ddqdω

(2π)d+1

χK(q, ω)

(δ + ξ2
0q2)

2
+ ω2

γ2

(
δ + ξ2

0q2
)

(8)

Use of Eq 5 then shows that if T or V #= 0, then the integral diverges as δd−4 but if T = V = 0 then the behavior is
δd−2, consistent with the standard relaxational quantal scaling with dynamical exponent z = 2.

In order to derive the renormalization group equations that describe the critical properties of Eq. ??, we integrate
out momenta in the Keldysh functional Eq. ?? that lie between Λ/b < k < Λ. On the other hand,in order to preserve
causality we integrate over all frequencies. After this we do the following change of variables for the momenta and
frequency, q = q′/b, and ω = ω′/bz, while the fields are rescaled to mcl,q → m′

cl,qb
1+(d+z)/2. These change of variables

ensure that the off-diagonal terms in the quadratic part of Eq. ?? remain unchanged. In order to keep the diagonal
term (Eq. 24) unchanged, T, V have to be rescaled such that,

dT (b)

d ln b
= zT (b);

dV (b)

d ln b
= zV (b) (9)

mq =
1

2
(m

−
− m+)mcl =

1

2
(m

−
+ m+)

[χ−1]R(q,Ω) = [χR(q,Ω)]−1 = δ − i
Ω

γ
+ ξ2

0q2

[χ−1]K(q, ω) =
Max(ω, T, V )

γ′

[χ−1]K acts as a “mass” for quantum fluctuations



Effective Field Theory
acts as a “mass” for quantum fluctuations[χ−1]K

[χ−1]K(ω → 0) = 0

At T=0 and at equilibrium (V=0)

strong quantum fluctuations

At finite T and at equilibrium (V=0)

[χ−1]K(ω → 0) =
T

γ′
"= 0

quantum fluctuations 
suppressed by T

At T=0 and in non-equilibrium (finite V)

[χ−1]K(ω → 0) =
V

γ′
"= 0

quantum fluctuations 
suppressed by V



Quartic Interactions

less than ImΣR/vF where nonconservation due escape into the leads is dominant. The

analysis sketched above then leads to a generating function of the form of Eq 1, with

SK = S(2) + S(4) + ... where

S(2) = −i
∫

dt
∫

dt′
∫

ddr
∫

ddr′
(
mcl(t, r) mq(t, r)

)

 0 [χ−1]A

[χ−1]
R

ΠK





mcl(t′, r′)

mq(t′, r′)


 (7)

Here mq = m−−m+

2 , mcl = m−+m+

2 , the ellipsis denotes terms of higher than fourth order in

m and the fourth order term S(4) will be presented and discussed below. The quadratic-level

inverse propagators are:

[χ−1]
R

(q, Ω) =
(
[χ−1]

A
)∗

= δ + −iΩ
γ + ξ2

0q
2 + . . . (8)

ΠK(q, Ω) = −2i
∑

ab coth Ω+µa−µb

2T
(Ω+µα−µβ)

γab (9)

Here the (χ−1)
(R,A)

describe non-conserved (because of the leads) magnetization fluctuations.

(γab)−1 = 〈Γa(p, Ω = 0)Γb(p, Ω = 0)/Γ3(p, Ω = 0)〉 |FS are fermi surface averaged decay rates,

and γ−1 =
∑

ab=L,R γ−1
ab . The “mass” δ depends on the interaction, layer density of states

and coupling to the leads. The key quantity is ΠK . In equilibrium systems at T = 0, ΠK(t)

vanishes at long times (as a power law for itinerant-electron models); however at T $= 0 and

(for all of the models we have studied) out of equilibrium ΠK(t → ∞) $= 0. This expresses

the physical effect of decoherence: mathematically, ΠK acts as a mass for the quantum

fluctuations. If T or V $= 0, quantum fluctuations are gapped and the asymptotic theory

is classical. Finally we note that the overdamped dynamics implies that the momentum

conjugate to m(q, t) is logarithmically large, so that the long time fluctuations are essentially

classical. The density matrix is easily obtained from the generating function using the

techniques of [9]. We find, up to corrections of O(V 2/Γ2) in the argument of the exponential,

ρ[mq(k), mcl(k)] ∼ δmq=0 exp

[
−

2Re[[χ−1(k)]
R
]|mcl(k)|2

iγΠK(Ω = 0)

]
(10)

We next consider the leading nonlinearity. After calculation, we find

S(4) = −i

∫
(d{k})

∑
i=1...4

uim
i
qm

4−i
cl (11)

Here the ui are interaction functions which depend on the momenta and frequency {k}

of all of the fields. The level broadening due to the leads means any space-dependence
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are interaction functions depending on the 
momenta and frequencies of all the fields

Renormalization Group

Rescaling

Integrate out fluctuations with Λ/b < q < Λ

q → q′/b, (Ω, T, V ) → (Ω′, T ′, V ′)/bz, mcl,q → mcl,qb
1+(d+z)/2



Solutions of the Scaling Equations

d=z=2 case is marginal; details of the crossover complicated

 At the end of scaling δ(b∗) ∼ 1

V (b∗) ! 1

V (b∗) ! 1

 quantum regime

 classical regime V > r
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Interacting electron system

FIG. 1: Upper panel: Schematic view of systems studied: central region with interacting electron

physics leading to critical behavior, coupled to two leads. Lower panel: Schematic phase diagram

in a plane defined by equilibrium distance from criticality, δ, and departure from equilibrium V . δc

marks an equilibrium quantum critical point separating a phase with long ranged order at δ < δc

from a disordered phase at δ > δc. The solid line denotes a nonequilibrium phase transition above

which the long ranged order is destroyed. The dashed lines indicate crossovers.

ρ̂(t) defined in terms of a Hamiltonian Ĥ and an initial condition ρ̂(tinit) via ρ̂(t) =

e−iĤ(t−tinit)ρ̂(tinit)eiĤ(t−tinit). The open systems we consider possess a well defined long-

time state defined by a density matrix ρ̂SS independent of the initial condition ρ̂(tinit). (To

select this state when symmetry breaking occurs we include in Ĥ an infinitesimal symmetry

breaking field). It is useful to use the usual Suzuki-Trotter breakup to express the problem

as a two-time contour functional integral [7–9], to use Hubbard-Stratonovich techniques to

decouple the interaction terms by introducing auxiliary fields which we interpret as order

parameter fluctuations, and finally to integrate out all of the degrees of freedom except those

connected with long wavelength order parameter fluctuations. The result of these consider-

ations is that the physics of the steady state system is expressed in terms of a generating

functional, Z, of source fields, η,[7, 9]

Z(η) =
∫
D[mi, mf ]ρSS,Λ (mi, mf )

∫ ′

D[m+(t), m−(t)]

eSK [{m+,m−,η}] (1)

Here m± are the fluctuating order parameter fields of interest and Λ is a short-distance

cutoff (as in equilibrium problems the precise manner in which the cutoff is imposed is

3

The quartic interaction is irrelevant/relevant for d+z>4 or <4

V < r = δ − δc

quantum

 classical



Phase Diagram at d=2

Dynamical critical 
exponent z=2

Generalized Fluctuation-Dissipation Theorem
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quantum

χK(Ω) = coth

(
Ω

2T

)
[χR(Ω) − χA(Ω)](c.f. in equilibrium at finite T)

fluctuation dissipation



Magnetization Dynamics

 Quantum Langevin Equation

 The noise is determined by the Keldysh response function 

−i〈ξ(q,Ω)ξ(q′,Ω′)〉 =
1

2
[χ−1]K(q,Ω)δ(q + q

′)δ(Ω + Ω′)

terms of v1 = u1V , v2 = ū2, v3 = u3
V and v4 = ū4

V 2 . leads to

dδ
d ln b = 2δ + 3v1ḡ (17)

dv1
d ln b = 2v1 − 18v2

1(f̄
KR + f̄KA) + 12v1v2f̄RA (18)

dv2
d ln b = 18v2

1f̄
KK − 30v1v2(f̄KR + f̄KA)

+4v2
2 f̄

RA − 36v1v3f̄RA (19)

dv3
d ln b = −2v3 + . . . ; dv4

d ln b = −4v4 + . . . (20)

Thus in the classical regime v3 and v4 vanish rapidly,v1 grows and v2 reaches a fixed point.

The effective theory becomes quadratic in mq which may be integrated out following the

techniques of [9] leading to (the label r implying renormalized parameters) ,

−
1

γr

∂mcl

∂t
= (δr − ξ2

0∇
2 + v1,rm

2
cl)mcl + ξ

〈ξ(x, t)ξ(x′, t′)〉 = δ(x − x′)δ(t − t′)
2V

γrLR
(21)

where we have used a standard transformation [10] to eliminate a coupling between the

noise and the classical field generated by v2. This equation is identical to that used in

the standard analysis of Model A [11] relaxational dynamics. We therefore conclude that

the voltage-driven transition is in the same universality class as the usual thermal 2d Ising

transition, and more generally that in this model, as far as universal quantities are concerned

voltage acts just as a temperature.

We next extend the analysis to the O(3) symmetric (Heisenberg) case. As in the equilib-

rium situation [1, 2] the physics of the disordered and quantum-classical crossover regimes

is only weakly dependent on spin symmetry, so we do not explicitly discuss these cases here.

Differences appear in the “renormalized classical” regime corresponding to adding a weak

nonequilibrium drive to an ordered state. In this regime the procedure leading to Eq. 21

gives a nonlinear stochastic equation describing both fluctuations of the amplitude of the

local magnetization and precession of magnetization fluctuations about the mean local mag-

netization. Here for reasons of space we focus on the most important special case, namely

precession of small amplitude, low frequency, long-wavelength fluctuations of the magneti-

zation direction about a state assumed to possess long ranged order directed along ẑ and

we denote the spin-gap by ∆. The important degrees of freedom are those transverse to the

ordering direction. We find that at scales t > 1/Γ and L > (vF /Γ) these are described by
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dv1
d ln b = 2v1 − 18v2

1(f̄
KR + f̄KA) + 12v1v2f̄RA (18)

dv2
d ln b = 18v2

1f̄
KK − 30v1v2(f̄KR + f̄KA)

+4v2
2 f̄

RA − 36v1v3f̄RA (19)

dv3
d ln b = −2v3 + . . . ; dv4

d ln b = −4v4 + . . . (20)

Thus in the classical regime v3 and v4 vanish rapidly,v1 grows and v2 reaches a fixed point.

The effective theory becomes quadratic in mq which may be integrated out following the

techniques of [9] leading to (the label r implying renormalized parameters) ,

−
1

γr

∂mcl

∂t
= (δr − ξ2

0∇
2 + v1,rm

2
cl)mcl + ξ

〈ξ(x, t)ξ(x′, t′)〉 = δ(x − x′)δ(t − t′)
2V

γrLR
(21)

where we have used a standard transformation [10] to eliminate a coupling between the

noise and the classical field generated by v2. This equation is identical to that used in

the standard analysis of Model A [11] relaxational dynamics. We therefore conclude that

the voltage-driven transition is in the same universality class as the usual thermal 2d Ising

transition, and more generally that in this model, as far as universal quantities are concerned

voltage acts just as a temperature.

We next extend the analysis to the O(3) symmetric (Heisenberg) case. As in the equilib-

rium situation [1, 2] the physics of the disordered and quantum-classical crossover regimes

is only weakly dependent on spin symmetry, so we do not explicitly discuss these cases here.

Differences appear in the “renormalized classical” regime corresponding to adding a weak

nonequilibrium drive to an ordered state. In this regime the procedure leading to Eq. 21

gives a nonlinear stochastic equation describing both fluctuations of the amplitude of the

local magnetization and precession of magnetization fluctuations about the mean local mag-

netization. Here for reasons of space we focus on the most important special case, namely

precession of small amplitude, low frequency, long-wavelength fluctuations of the magneti-

zation direction about a state assumed to possess long ranged order directed along ẑ and
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 This is the same as the Model A dynamics; 
the voltage driven transition is in the same universality 

class as the usual thermal Ising transition; 
voltage acts like temperature



Heisenberg Magnet

The physics of the disordered and quantum-classical 
crossover regimes is weakly dependent on the spin symmetry

Differences appear in the ‘renormalized classical’ regime 
corresponding to adding a weak non-equilibrium drive to 

an ordered state

The Langevin Equation in the ordered phase (near QCP) 
an equation of the form

axx

Γ

∂ "m

∂t
+ ẑ ×

axy∆

Γ2

∂ "m

∂t
−

(
bxx −

bxy∆V

Γ2
ẑ×

)
ξ2
0∇

2 "m = "ξ (22)

The a, b coefficients are numbers of order unity. The subscripts indicate whether they

arise from the xx or xy terms in the retarded/advanced susceptibilities. The term involving

axy is the usual spin precession term in the Landau-Lifshitz-Gilbert equation; it is explicitly

proportional to the spin gap ∆ so is small near the quantum critical point. The term

involving axx expresses the damping due to coupling to the leads; it does not vanish near

the critical point and is thus the dominant time derivative term.

"ξ in Eq. 22 is a fluctuating noise field which at long times (t > V −1, T−1 ) is delta

correlated 〈ξi(q, t)ξj(q′, t′)〉 = 2Eδijδ(q + q′)δ(t − t′) where E = Taxx

Γ at T &= 0, V = 0, and

E = V axxΓLΓR

Γ3 for T = 0, V &= 0. Solving Eq 22 leads to

〈m+(q, t)m−(q′t′)〉 = ΓEδ(q+q′)e−Deffq2ξ20 |t−t′|−iωeff (t−t′)

(axxbxx−
axybxy∆2V

Γ3 )q2ξ2
0

(23)

The oscillatory term in the above equation expresses the usual spin precession with precession

frequency ωeff = (axybxxΓ2+axxbxyV Γ
a2

xxΓ2+a2
xy∆2 )∆q2ξ2

0 . We see that the precession frequency is shifted

by an amount proportional to V . This is the spin-torque effect [6, 12]. The decaying term

expresses the damping due to coupling to leads Deff = (axxbxxΓ3−axybxy∆2V )
a2

xxΓ2+a2
xy∆2 . If axxbxx <

axybxy
∆2V
Γ3 , Eq 22 supports modes which grow exponentially with time leading to the spin-

torque instability recently discussed [12]. However, where the present theory applies (∆,V
Γ '

1) there is no instability. Further, calculation reveals that obtaining a nonzero bxy also

requires an energy-dependent asymmetry between the leads ( ΓL(ε1)ΓR(ε2)−ΓL(ε2)ΓR(ε1) &=

0). Evaluating Eq. 23 at equal times shows that the mean square fluctuations diverge

as 1
q2 . This divergence signals the instability of the ordered state by the voltage-induced

decoherence in precise analogy to the usual 2d thermal case.

In summary we have presented a theory for nonequilibrium phase transitions in an itin-

erant electron system coupled to external reservoirs. We provide a precise mapping onto an

effective classical theory which demonstrates that the leading effect of the nonequilibrium

drive is to generate an effective temperature. Other effects are irrelevant near the critical

point. It will be very interesting to identify models where the effect of nonequilibrium on

the critical point was not just to generate an effective temperature for example by driving

a dynamical instability or a non-delta correlated noise. The results presented here suggest
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Future



Future Directions

Investigation of other dynamical universality classes

RG in the full quantum problems

⇒ Classical limit

⇒ Dynamical universality classes (model A to J)

Systems where the drive couples linearly to the order 
parameter (e.g. superfluid-insulator transition)

Generalization to other geometries

Driven Bose condensates



Summary

generalized renormalization group scheme 
to nonequilibrium systems

studied the steady-state nonequilibrium magnetic 
quantum critical phenomena in open systems 

voltage playing a role of effective temperature in 
the Ising limit and close to the quantum critical 

point in the Heisenberg case; 
dynamical phase transitions in the Heisenberg 
case, in the classical regime, far away from the 

quantum critical point


