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Outline

PAST:

Equilibrium magnetic quantum phase transitions
in itinerant magnets; Hertz-Millis-Moriya theory

PRESENT:

General consideration:
nonequilibrium quantum phase transitions

Open system; steady state nonequilibrium state

Development of renormalization group scheme

Study of universality classes

FUTURE:
Future directions






Equilibrium quantum phase transitions

Phase transitions at T=0 tuned by control parameters
(e.g. pressure, magnetic fields, chemical doping)

Change in broken symmetries at a quantum critical point
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Equilibrium quantum phase transitions

Spatial and Temporal fluctuations
are coupled in
quantum phase transitions

Effective dimensionality
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Fermi Liquid Theory and Quasiparticle Picture

“Quasiparticle”
- Interactions
MGV adiabatically N
o~
) ap”)
m _NO) _ F
m  N(0) 3
dE
ar ~ V!

v x N(ep) x m™



Breakdown of Landau Fermi Liquid Theory

What happens when the interaction becomes too
large ?
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Quantum Criticality:
divergent specific

heat capacity
H. Von Lohneyson (1996)
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Theory of Quantum Ciriticality in Equilibrium
Itinerant Magnetic Phase Transitions

Effective field theory of the order parameter in
d+z dimensions (effective space-time dimensions)
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X Ha,w) =

(cf. F = /dd;c ([Vﬁz(x)]2 + 0[m(x)]? + u[frﬁ(x)]4) Landau free energy)

2
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['(g) o< constant ~ Open System (z=2)



® Renormalization Group Analysis;

quartic term is irrelevant ( desr > 4); relevant ( desr < 4)

dT'(b)
dinb

® T is a relevant perturbation

= 2T'(b)

Thermal fluctuations decouple the dynamics and
statics - classical transitions in d-dimensions
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General Consideration

The fields which drive the system out of equilibrium
typically increase its energy and destroy phase coherence;
this may be analogous to temperature !
similarity between non-equilibrium transitions and
thermal transitions ?
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General Consideration

The fields which drive the system out of equilibrium
typically increase its energy and destroy phase coherence;
this may be analogous to temperature !
similarity between non-equilibrium transitions and
thermal transitions ?
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General Consideration

Departures from equilibrium may also break basic
symmetries (e.g. time reversal invariance, spatial
symmetries such as rotation and inversion)

These new effects may change the critical behavior.



What problems do we want to solve ?

Theory of nonequilibrium quantum criticality in
itinerant electron systems

Open systems coupled to reservoirs -
non-conserved order parameter;
nonequilibrium by differences between reservoirs -
time-independent drive and steady state
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2D interacting
electron system

H = Hlayer+Hmix+Hleads
rightléad .. = S tscl ;s cio+ Hin

> ,LLR 1,0,0

_ T
Hpiz = E <tk,bci,gaz’,k,a,b + h.c.
i k.ob=L.R

2D ltinerant electron system coupled to two 3D leads

Let us consider the ISING limit (longitudinal magnetization)



Goals

Difficulty in the formalism: Hertz-Millis-Moriya theory
is based on a quantum generalization of the
Landau-Ginzberg free energy.

But free energy is an equilibrium concept.

Find a way to express nonequilibrium problems
in a Feynman path integral form;
sum over histories on the Keldysh time contour

Determine the nature of quantum phase transition;
determine dynamic and static universality classes;
generalize renormalization group scheme
to nonequilibrium systems



Keldysh Path Integral Formalism

Equilibrium field theory is based on the crucial
assumption that the asymptotic state in the distant past
(initial state) and distant future are identical

Out of equilibrium this assumption is invalid and
we have no knowledge of the asymptotic state in
the distant future

Keldysh approach; let the quantum system evolve forward
in time then rewind its evolution back;
then no knowledge of the distant future is necessary




Keldysh Path Integral Formalism

Density matrix — A(t) = e 0= tmie) p(t,5, ) et (= tinie),

Keldysh generating functional  Zx = Tr[p(t)]

Electrons may be integrated out; Keldysh path integral in terms
of order parameter fields on the forward and backward paths
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Effective Field Theory

Integrate out electronic degree of freedom and
obtain an effective field theory of order parameter
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Effective Field Theory

—1]K

X acts as a ‘mass’’ for quantum fluctuations

At T=0 and at equilibrium (V=0)

X" (w—0)=0 strong quantum fluctuations

At finite T and at equilibrium (V=0)

1K T quantum fluctuations

—0)=—#0
X v=0) 7 suppressed by T

,y/
At T=0 and in non-equilibrium (finite V)

K (w = 0) = K/ 4o Quantum fluctuations
gl suppressed by V



Quartic Interactions
S =i [(a{k)) Y wmpmd

1=1...4

u; are interaction functions depending on the
momenta and frequencies of all the fields

Renormalization Group

Integrate out fluctuations with A/b<g<A

Rescaling ¢ — ¢'/b,(Q.T.V) — (., T, V') /b7 g — me b7



Solutions of the Scaling Equations
The quartic interaction is irrelevant/relevant for d+z>4 or <4

d=z=2 case is marginal; details of the crossover complicated
At the end of scaling (b*) ~ 1

V(") <1 quantum regime V <r=4§—4.

V(") >1 classical regime  V >r
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Phase Diagram at d=2
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Generalized Fluctuation-Dissipation Theorem

At T=0 and in the classical regime,V > r

X = 21;26H Q) = ()] Tegr ~ FLFF v
(cf. XK\(Q) = coth (2%) X" () ;XA(Q)] in equilibrium at finite T)

fluctuation dissipation



Magnetization Dynamics
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Quantum Langevin Equation -

The noise is determined by the Keldysh response function
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In the classical regime,V > r X" <V

¢(t) becomes gaussian white noise
(€ DE( 1) = 8o — )6t — 1)
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This is the same as the Model A dynamics;
the voltage driven transition is in the same universality
class as the usual thermal Ising transition;
voltage acts like temperature



Heisenberg Magnet

The physics of the disordered and quantum-classical
crossover regimes is weakly dependent on the spin symmetry

Differences appear in the ‘renormalized classical’ regime
corresponding to adding a weak non-equilibrium drive to
an ordered state

The Langevin Equation in the ordered phase (near QCP)
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spin precession asif the Landau-Lifshitz-Gilbert Eq.

spin-torque effect when T;(c1)Tr(e2) —T'r(e2)Tr(e1) # 0






Future Directions

Investigation of other dynamical universality classes

RG in the full quantum problems
= Classical limit

= Dynamical universality classes (model A to )

Systems where the drive couples linearly to the order
parameter (e.g. superfluid-insulator transition)

Generalization to other geometries

Driven Bose condensates



Summary

studied the steady-state nonequilibrium magnetic
quantum critical phenomena in open systems

generalized renormalization group scheme
to nonequilibrium systems

voltage playing a role of effective temperature in
the Ising limit and close to the quantum critical
point in the Heisenberg case;
dynamical phase transitions in the Heisenberg
case, in the classical regime, far away from the
quantum critical point



