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Experiment NE05 

Inductor -Resistor-Capacitor (LRC) Series Circuit  

Laboratory Manual 

Department of Physics 

The University of Hong Kong 

Aims  

To demonstrate various properties of an LRC series circuit such as:  

1. Phase difference between potential difference across the circuit elements and current of the circuit.  

2. Resonant frequency of a LRC series circuit.  

3. Impedance of the circuit under different alternating circuit (A.C.) frequencies.  

Self-learning material: Theory - Background Information 

Summary: 
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Definition: 

A.C. 

(a) a.c. and d.c. 

In a direct current (d.c.) the drift velocity is in one direction only. Common source of d.c. is a 

battery. In an alternating current (a.c.), the direction of the drift velocity reverses, usually many times a 

second. A.c. is commonly generated by an a.c. generator. 

The effect of a.c. are essentially the same as those of d.c. Both are satisfactory for heating and 

lighting purposes.  
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Figure 1:.Sinusoidal a.c. Figure 2:.constant d.c. 
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(b) Terms 

1. Period, frequency and angular frequency 
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Figure 3: sine function of time graph 

 An alternating current or e.m.f. varies periodically with time in magnitude and direction. The 

simplest a.c. function is a sine function and is shown in Figure 3. The general equation of a sine function is 

shown below. 
 ( )sinAy t = +

Amplitude Angular 

frequency Time

Initial 

phase

 
One complete alternation is called a cycle and the number of cycles occurring in one second is 

termed the frequency ( f ) of the alternating quantity. The SI unit of frequency is the hertz (Hz) and was 

previously the cycle per second. The frequency of the electricity supply in Hong Kong is 50Hz which means 

that the duration of one cycle, known as the period (T ), is 1/50 = 0.02s. In general 
1

f
T

= . 

2
2 f

t T

 
 


= = =


  (3)
 

2. Simplest form of a.c. 

 The simplest and most important alternating e.m.f. can be represented by a sine curve and is said 

to have a sinusoidal waveform. It can be expressed by the equation: 

0 sin t  =   (4)
 

where  is the e.m.f. at time t, 0 is the peak or maximum e.m.f. and   is a constant which equals 2 f  

where f is the frequency of the e.m.f. 

Similarly, for a sinusoidal alternating current we may write  

0 sini i t=  (5)
 

3. 4 important values of A.C. 

a. Instantaneous value, tV  is defined as the e.m.f., potential difference, current and power of a.c. at 

certain time. Its mathematical expression at time t  for potential difference: sint oV V t= ; for 

Current: sint oi i t= . 

Relationships between period, frequency and angular frequency: 

1 2
T

f




= =    (1) or   

1
f

T
=    (2)

 



 

Version 2.0  NE05 - LRC Series Circuit 

Page 3 of 21  

a. Peak value, oV is defined as maximum or minimum instantaneous value of a.c. Its mathematical 

expression for potential difference and current are t oV V=
 
 and  t oi i= 1 sin 1t−    

a. Averaged value/ Mean value1, P  is defined as the mean value of a certain periodic quantity P is 

represented by the notation P .It s mathematical expression is 

 

 0
 

T

P dt
P

T


=
  

i) Root-mean-squared value (r.m.s. value)2 

a. Definition:  

The Root-mean-squared (r.m.s.) value of an alternating current (also called the effective value) is 

the steady direct current which converts electrical energy to other forms of energy in a given resistance at 

the same rate as a.c. 

Although the instantaneous value (current or e.m.f.) is varying,. The average rate at which it 

supplies electrical energy to the lamp equals the steady rate of supply by the d.c. ( . .d ci ) and in practice it is 

this aspect which is often important. 

b. Proof: 

In general, considering  the energy supplied to a resistor with resistance R , 

R R

id.c.i

. .a cP
. .d cP

 
Figure 4: Schematic diagrams for a.c. and d.c. with same average power output 

If the average power output of circuits in Figure 4 is equal, i.e. 

. . . .d c a cP P=  

( )2 2

. . mean value of d ci R i R=    (6) 

( )2

. . mean value of d ci i=   (7) 

. .d ci = square root of the mean value of the square of the current 

. . . . .d c r m si i =
 

 (8) 

If the a.c. is sinusoidal (i.e. the source is a sine function) then 0 sini i t=
 

 (9) 

( )2 2

. . . mean value of sinr m s oi i t =   (10) 

( )2

. . . mean value of sinr m s oi i t =   (11)
 

. . .
2

o
r m s

i
i =    (12) 

 

1 Usually, the symbol of mean value or average value of a quantity x  is donated by x  or x   

2 Usually, the symbol of root-mean-squared of a quantity x  is donated by 
2x  or 2x   
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Graphically, the area of . .a cP t− curve is equal to that of . .d cP t− curve as shown in Figure 5. 
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Figure 5: Power generated vs. time graphs for a.c. and d.c. sources 

c.  Why mean-squared-value of sine function, 
2 1

sin
2

 = ? 

Vector diagram or Phasor diagram 
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Figure 6: Rotating vector of an alternating quantity 

A sinusoidal alternating quantity can be represented by a rotating vector (often called a Phasor) as 

shown in Figure 6. It is called a Phasor diagram. An alternating quantity sinoy Y t=
 
where oY is the peak 

value of the quantity and its frequency 
2

f



= . If the line OP  has length oY  (i.e. radius of an imaginary 

circle) and rotates in an anticlockwise direction about O  with uniform angular velocity  , the projection 

' 'O P ; of OP  on 'O y  at time t  (measured from the time when OP  passes through 'OO ) is sinoY t  . 

If OP  is directed as shown Figure 6 by the arrow on it, then we can say that the projection on 'O y  of the 
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rotating vector OP  gives the value at any instant of the sinusoidal quantity y . (Simple harmonic motion, 

being sinusoidal, can be derived similarly from uniform motion in a circle.)  
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Figure 7: Phase difference between two alternating quantities 

 The Phasor diagram is very useful for representing two sinusoidal quantities which have the same 

frequency f or same angular frequency   but are not in phase (i.e. 0  ) The wave forms of two such 

quantities 1y  and 2y  and the corresponding vector diagram are shown in Figure 7 for time t . The phase 

difference between them is   , with 2y lagging, and this phase angle is maintained between them as the 

vectors rotate. Being vectors they can be added by the parallelogram law if they represent similar quantities, 

e.g. p.ds. or currents 

 Algebraically 1y  and  are expressed by the equations: 1 1 siny Y t=  and ( )2 2 siny Y t = −  

Resistor: 

(a) Resistance in a.c. circuit  

The resistance, denoted by R , measures the ability of a resistor to oppose the passage of current 

through it. The formula for the resistance of a conductor is  

l
R

A
=

  
 (13)

 

where   is the electrical resistivity of the material, l is the length, and A is cross-section area of 

the conductor.  

For ohmic material, the current passing through it is directly proportional to potential difference 

across that material. i.e. Obeys Ohm’s law. R RV i
 

R RV Ri = , where R is a constant. 

(b) Pure resistive circuit 

The current I through a resistor R3 is in phase with the voltage VR applied to it.  

RVSV
i

 

 
3 Symbol of resistor could be IEC-style ( ) or American-style ( ). 

2y
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Figure 8: Schematic diagram of pure resistance circuit 

Referring to the Figure 8, the a.c. source is a sinusoidal voltage. i.e. S RV V=  

Let applied potential difference across resistor,  

sinR RoV V t=
 
 (14) 

Where RoV  is the peak value of potential difference across the resistor. 

According to Ohm’s law, the current is also a sinusoidal function. and in phase with voltage VR 

applied 
 

sinRoR
VV

i t
R R

= =
 

 (15) 

Let  Ro
o

V
i

R
=

 
 (16) 

Where oi  is the peak value of current passing through the resistor. As a result, 

sinoi i t=
 
 (17) 

Hence i and RV  are in phase, also 

, . .o

o . . .

R r m sR R

r m s

VV V
R

i I i
 = =

  
 (18) 

Like the case in d.c., the peak current oi  passing through a resistor depends on both the resistance 

R  and potential difference across it RV . 

Capacitance in a.c. circuits 

(a) Definition 

A simple capacitor4 consists of two parallel rectangular conducting plates separated by a dielectric 

(i.e. air, polymers, quartz and glass…etc), where a dielectric is a kind of insulator which can be polarized 

by applying an electric field. When a capacitor is completely charged by a battery (i.e. d.c. source), it 

contains equal but opposite charges on the two plates, i.e. one plate gains electrons and the other loses the 

same amount of electrons through the circuit. If the charge stored by a certain capacitor is Q , it actually 

means that one plate stores charge Q+ , and the other plate stores charge Q− . Please noted that there is no 

current pass through the capacitor by using d.c. source. But there is a virtual “current” passing through the 

capacitor by using a.c. source. 

The capacitance, denoted by C , is defined as the charge stored per unit voltage applied to the 

capacitor. In mathematical form, we have  

C

Q
C

V


   
 (19)

 

where Q  is the charge stored and CV  is the potential difference across the plates. In SI units, 

capacitance is measured in farads ( F ) or 
-1 2J C .  

 
4 Symbol of capacitor could be ( ). 
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Capacitance is a measure of the capacity to store charge and thereby electrical energy 5 . The 

capacitance is an intrinsic property that could be calculated by knowing the dimension and material used.  

For parallel plates only, the potential difference and electric field across the capacitor with 

separation d and surface area surfaceA  are: 

CV E d=    (20) 

2 2

1 1

4 4o o o

Q Q
E

r r



   
= = =

1

surface o

Q
E

A 
 =   (21) 

By eliminating E in the above equations, for a parallel-plate capacitor, the capacitance is  

A
C

d
=

 
   (22)

 

where   is the permittivity of the dielectric material separating the two plates, d  is the separation 

between the plates, and A is the overlapping area of two plates. 

(b) Flow of a.c. ‘through’ a capacitor 

2V, . . .r m s

i

C

1.5V
0.3A

1000 F

+−

mA

 

2V

C

1.5V
0.3A

1000 F

+−

mA

 

Figure 9: Phase difference between CV  and i   

As shown in Figure 9, if a 1000 F capacitor is connected in series with a 1.5V, 0.3 A lamp, and a 2V 

d.c. supply, the lamp as expected, does not light. Is there any current flow? With a 2V r.m.s. 50 Hz supply, 

it is nearly fully lit. 

The a.c. is apparently flowing through the capacitor. In fact, the capacitor is being charged, 

discharged, charged in the opposite direction and discharged again, fifty times per second (the frequency 

of the a.c.), and the charging and discharging currents flowing through the lamp light it. No current 

actually passes through the capacitor (since its plates are separated by an insulator(i.e. dielectric material) 

but it appears to do so and we talk as if it did. A current would certainly be recorded by an a.c. 

milliammeter. 

(c) Phase relationships 

When a.c. flows through an ideal resistor (having no capacitance or inductance) the current and 

potential difference reach their peak values at the same instant, i.e. they are in phase. This is not so for a 

capacitor. 

For a capacitor, the current through it is seen to lead the potential difference across it by one-

quarter of a cycle, i.e. the current reaches its maximum value one-quarter of a cycle before the potential 

difference reaches its peak value.  
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Figure 10: Phase difference between CV  and i   

 Considering a pure capacitance circuit as shown in Figure 11, current i  and applied potential 

difference

 
CV  are out of step because current i  flow is a maximum immediately an uncharged capacitor 

is connected to an a.c. supply. There is as yet no charge on the capacitor to oppose the arrival of charge. 

Thus at O  the applied potential difference, CV  though momentarily zero, is increasing at its maximum 

rate (the slope of the tangent at O  to the potential difference graph is a maximum) and so the rate of flow 

of charge – the current, i  – is also a maximum.  

Between O  and A  the potential difference CV is increasing but at a decreasing rate, the charge 

on the capacitor is increasing ( )CQ CV= but less quickly, which means that the charging current i  is 

less. At A  the applied potential difference CV

 

is a maximum and for a brief moment is constant. The 

charge on the capacitor will also be a maximum and constant. The rate of flow of charge is therefore zero, 

i.e. the current 
dQ

i
dt

=

 

is zero. The phase difference between CV  and i  can thus be explained. 

(d) Mathematical treatment 

Considering a pure capacitance circuit as shown in Figure 11, let a potential difference CV  be 

applied across a capacitance C and let its value at time t  be given by 

, sinC C oV V t=
 
 (23) 

where ,C oV is its peak value and 2 f = where f is the frequency of the supply. 

CV
SV

i
C

 
Figure 11: Schematic diagram of pure capacitance circuit 

The charge Qon the capacitance at time t  is 

CQ V C=
 
 (24) 

For the current i flowing ‘through’ the capacitor we can write 
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i = rate of change of charge
dQ

dt
=  (25) 

CQ CV= (Definition of capacitance) 

( )
d dv du

uv u v
dt dt dt

= + (quotient rule) where u  and v  are function of  t ( )C

d
i CV

dt
 =  (26)  

( ) 0
d

C
dt

=  as capacitance is a constant and independent of  t  

C
C

dV dC
i C V

dt dt
 = +  CdV

i C
dt

 =   (27)
  

, sinC C oV V t=  ( ), sinC o

d
i C V t

dt
 =  (28) 

( )

( )
( )(sin ) sin

d td d
t t

dt dt d t


 



 
=  

 
 where   and ,C oV  are constant and independent of  t  

( ), sinC o

d
i CV t

dt
 =  (29) 

( )
( )sin cos

d
t t

d t
 



 
= 

   
and  

( )d t

dt


=   where   is a constant and independent of  t

 

( ), cosC o

d
i CV t t

dt
  =  (30) 

, cosC oi CV t  =   (31)
 

Mathematically, since
 
cos sin

2
t t


 

 
= + 

   

Equation (31) becomes,  
, ,cos sin

2
C o C oi CV t CV t


   

 
= = + 

 
 (32) 

By comparing , sinC C oV V t= with 
, sin

2
C oi CV t


 

 
= + 

 
, the current ‘through’ capacitor (a 

cosine function) thus leads the applied potential difference (a sine function) by one quarter of a cycle or, 

as is often stated, by 
2


 radians6 or 90

 

(1 cycle being regarded as 2  radians or 360  ) as shown in 

Figure 10.  

Let  ,o C oi CV=  (33) 

cosoi i t=  (34)
 

According to equation (33),  

 
6 Without specifically mentioned, all angle should be in terms of radians rather than degree. 
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o

o

1 1

2

CV

i C fC 
 = =

 

 (35) 

The ratio of r.m.s. of potential difference to that of current equal to the ratio of peak value of 

potential difference to that of current.  

,. . .

. . .

C or m s

r m s o

VV

i i
=

 

 (36) 

By substituting equation (35) into equation (36) and 2 f =

 
. . .

. . .

1 1

2

r m s

r m s

V

i C fC 
 = =

  

 (37)

 

 This expression resembles 
V

R
i
= which defines resistance, 

1

2 fC
 replacing R . The quantity 

1

2 fC
 is taken as a measure of the opposition of a capacitor to a.c. and is called capacitive reactance 

CX . Hence,    . . .

. . .

1

2

r m s
C

r m s

V
X

i fC
 =

 
 (38)

 

The ohm is the SI unit of CX  if the unit of f is 
-1s  (hertz) and that of C is 

1CV−
 The term 

1

fC
 

then has units 
-1

1

V
VA

Cs−
= =  . It is clear that  decreases as f  and C increase.  

 Reactance is not to be confused with resistance; in the latter electrical power is dissipated, 

whereas it is not in a reactance. 

Inductor 

(a) Definition 

 An inductor7 is a device storing energy in magnetic field, for example coils or solenoids (i.e. a series 

of coils). The inductance, denoted by L , is the ability that an inductor to store energy in a magnetic field. 

In particular, the term “self-inductance” is used to describe the behavior of generating an opposing 

electromotive force (or called back e.m.f.) proportional to the rate of change in current in a circuit. It is 

Faraday’s Law8, i.e. back

di

dt
  −   (39)  or back

di
L

dt
 = −   (40)

 

 

7 Symbol of an inductor/ a solenoid could be with ferromagnetic materials ( ) or without 

ferromagnetic materials ( ). 

8 
back

dN dB d N
NA NA i

dt dt dt l
 

  
= − = − = − − 

 
 where BA= , 

N
B i

l
= , N  is the number of turns 

on coils in the solenoid, l is the length of the solenoid, A  is the cross-sectional area of solenoid and i is the current 

passing through of the solenoid

 

     

2

back

N A di

l dt


 = −  and comparing 

back

di
L

dt
 = −

   

2N A
L

l
 =

 

CX
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For an infinitely long solenoid, the inductance is   

2N A
L

l
=  (41)

 

, where   is the permeability of the material inside the solenoid, N  is the number of turns of coils 

in the solenoid, A  is the cross-section area of the coil, l  is the length of the coil. 

The SI unit of inductance L  is in henrys. 

(e) Phase relationships 

 An inductor in an a.c. circuit as shown in Figure 13 behaves like a capacitor in that it causes a phase 

difference between the applied potential difference LV
 
and the current i . In this case, however, the current 

i  lags on the potential difference LV
 
by one-quarter of a cycle (i.e. 90 ) as shown in Figure 12. 

 

T
 

t   
  

 
 

, cosL L oV V t=

sinoi i t=

t  =
back i

, cosback back o t  = −

LV

O

A

 

Figure 12: Phase difference between LV  and i  

 In Figure 12, at O , the current i  is zero but its rate of increase is a maximum (as given by the 

slope of the tangent to the current graph at O or max
di

dt
=  ) which means, for an inductor of constant 

inductance L , that the rate of change flux is also a maximum ( max
d dB

A
dt dt


= = )9. Therefore by 

Faraday’s law the back e.m.f. (or called induced e.m.f.)is a maximum ( maxinduced = ) but, by Lenz’s 

law, of negative sign since it acts to oppose the current change.  

At A the current i  and flux   are momentarily a maximum and constant. Their rate of change is 

zero (slope of tangent to current graph is zero at A or 0
di

dt
=  and max

d dB
A

dt dt


= =  ) and so the back 

e.m.f. is zero ( 0induced = ). If the inductor has negligible resistance, then at every instant the applied 

potential difference LV
 
must be nearly equal and opposite to the back e.m.f. (i.e. 

L inducedV = ). The 

potential difference LV  acts on the coil whilst the e.m.f. acts back upon the source, just like two forces 

acting on different bodies. 

 

9  For a long solenoid, 
N

B i
l

=
dB di

dt dt
   
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(f) Mathematical treatment 

L
VS

V
i

 
Figure 13: Schematic diagram of pure inductance circuit 

In this case, it is simpler to start with a pure inductance current as shown in Figure 13. Consider an 

inductor with inductance L through which current i  flows at time t  where 

sinoi i t=   (42)
 

where ,L oi is its peak value and where is the frequency of the supply.  

The back e.m.f. (or called induced e.m.f.) in the inductor due to changing current is 

back

di
L

dt
 = −   (43) 

Substituting equation (42) into equation (43)
 

( )sinback o

d
L i t

dt
  = −  (44) 

oi is a constant and independent of t  ( )sinback o

d
Li t

dt
  = −  (45)

 

( )
( )

( )
( )sin sin cos

d td d
t t t

dt dt d t


   


= =

 
and   

( )d t

dt


=  where   is a constant and 

independent of  t where   is a constant and independent of  t
 

 cosback oLi t  = −  (46) 

Assuming the inductor has zero resistance , then for current to flow the applied potential 

difference must be equal and opposite to the back e.m.f., hence 

L backV = −  (47) 

Substituting equation (46) into equation (47) 
 

cosL oV Li t  =  (48)
 

The applied potential difference is given by  

, cosL L oV V t=  (49) 

where where is the frequency of the supply and ,L oV is its peak value. According to equation 

(48) is given by  

,L o oV Li=   (50) 

The ratio of r.m.s. of potential difference to that of current equal to the ratio of peak value of 

potential difference to that of current.  

i.e. ,. . .

. . .

L or m s

r m s o

VV

i i
=   (51) 

Substituting equation (50) into equation (51) and
 

2 f =

 

2 f = f

2 f = f
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,. . .

. . .

2
L or m s o

r m s o o

VV i L
L fL

i i i


  = = = =

 

 (52)

 

This expression resembles 
V

R
i
= which defines resistance, 2 fL  replacing R . The quantity 

2 fL  is taken as a measure of the opposition of an inductor to a.c. and is called inductive reactance 

LX . Hence, 

. . .

. . .

2r m s
L

r m s

V
X fL

i
 =  (53) 

Phasor diagrams for pure resistance, pure capacitance and pure inductance circuit 

The vector diagram for a pure resistance in an a.c. circuit. The current i  is in phase with applied 

potential difference RV  (i.e. phase difference = 0  or 360 ) as shown in Figure 14. 

The vector diagram for a pure capacitance (i.e.. infinite dielectric resistance) in an a.c. circuit. The 

current i  leads the applied potential difference CV  by 90 .(i.e. phase difference = 90 ) as shown in 

Figure 15. 

For a pure inductance (i.e. zero resistance), in this case the current  lags on the applied potential 

difference LV  by 90 .(i.e. phase difference = 90 ) as shown in Figure 16. 

 
i RV

 
 

i

CV
 

i

LV

 

Figure 14: Phasor diagram of 

RV  and i  

Figure 15: Phasor diagram of 

CV  and i  

Figure 16: Phasor diagram of 

LV  and i  

RC series A.C. circuit 

Suppose an alternating potential difference CV  is applied across a resistance R  and a 

capacitance C  in series as shown in Figure 17. Because of  in series arrangement. the same current i

flows through each component and so the reference vector will be that representing i . The potential 

difference RV across R  is in phase with i  , and  , that across C , lags on i by 90  (or 
2


radians)  The 

vector diagram is as shown in Figure 18. 

CR

VS

i

RV CV
 

 
i

CV  

RV

Reference Phasor



SV
 

Figure 17: Schematic of RC series circuit. Figure 18: Phasor diagram of RC series circuit 

 The vector sum of RV  and CV  equals the applied potential difference SV  hence 

i

CV
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2 2 2

S R CV V V= +  (54) 

But RV iR= and C CV iX=  where CX is the capacitive reactance ofC  and equals 
1

C
, hence 

( )2 2 2 2

S CV i R X= +  (55) 

( )2 2

S CV i R X= +  (56) 

 The quantity ( )2 2

CR X+  is called the impedance Z  of the circuit and measures its opposition 

to a.c. It has resistive and reactive components and like both is measured in ohms. Hence 

( )2 2S
C

V
Z R X

i
 = +  (57) 

 Also, from the vector diagram we see that the current i leads by SV  a phase angle  which is less 

than 90 (or less than 
2


radians) and is given by tan C C C

R

V iX X

V iR R
 = = =  (58) 

LR series A.C. circuit 

The analysis in Figure 19 is similar as RC series A.C. circuit but in this case the potential difference 

LV across L leads on the current i and the potential difference LV across L  is again in phase with i  . As 

before the applied potential difference SV  equals the vector sum of CV and RV , and so 

2 2 2

S L RV V V= +   (59) 

L

VS

i

LV

R

RV
 

 

i

LV  

RV

Reference Phasor



SV

 

Figure 19: Schematic of LR series circuit. Figure 20: Phasor diagram of LR series circuit 

But RV iR= and L LV iX=  where LX is the reactance of L  and equals L , hence 

( )2 2 2 2

S LV i R X= +   (60) 

( )2 2

S LV i R X= +  (61) 

Hence the impedance Z  is given by  

( )2 2S
L

V
Z R X

i
 = +  (62) 

Also, from the vector diagram we see that the current lags on SV  by a phase angle  which is 

less than 90  (or less than 
2


radians)  and is given by tan L L L

R

V iX X

V iR R
 = = =  (63) 

i
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LRC series a.c. circuit 

A circuit as shown in Figure 21 consists of an inductor L  , a resistor R  and a capacitor C  is called 

an LRC circuit. It can be connected in series or in parallel. In this experiment, only the series LRC circuit 

is focused. In any series circuit, all circuit elements share the same current at any point in the LRC circuit. 

i.e.     ( ) ( ) ( ) ( )S L R Ci t i t i t i t= = =  (64) 

The circuit forms a simple harmonic oscillator for current and resonance occurs under specific 

conditions. 

L

VS

i

LV

R

RV

C

CV
 

 

i

LV  

RV

Reference Phasor



SV

CV

( )L CV V−

 

Figure 21: Schematic of LRC series circuit. Figure 22: Phasor diagram of LRC series circuit 

According to the analysis in LR, RC series circuits, LV leads the current (reference) vector i by 90 , 

CV  lags on it by 90 , and RV  is in phase with it. LV and CV  are therefore 180 (half a cycle) out of phase, 

i.e. in antiphase or out of phase.  

If LV is greater than CV ,or in other words, LX is greater than CX , their result ( )L CV V−  is in the 

direction of LV . The vector sum of ( )L CV V− and RV equals the applied potential difference SV , therefore 

( )
22 2

S R L CV V V V= + −  (65) 

But RV iR= , C CV iX=  and L LV iX= where CX is the reactance ofC  and equals 
1

C
 and LX is 

the reactance of L  and equals L , hence 

( )( )2
2 2 2

S L CV i R X X= + −  (66) 

( )( )2
2

S L CV i R X X= + −   (67)  if L CX X
 

Hence the total impedance TotalZ  is given by  

( )( )2
2S

Total L C

V
Z R X X

i
 = + −   (68)  if L CX X

 

or
 

2

2 1
2

2
TotalZ R fL

fC




  
 = + −    

 (69) 
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Also, from the vector diagram we see that the current lags on SV  by a phase angle  which is 

less than 90  (or less than 
2


) radians and is given by 

( )
tan

L CL C L C

R

i X XV V X X

V iR R


−− −
= = =     (70)  if L CX X

 

1

1
2

2
tan

fL
fC

R




 −

 
− 

 =
 
 
 

 (71) 

Electrical resonance – Series resonance 

 

of
f

Impendence

1

2
CX

fC
=

2LX fL=

TotalZ

R

Frequency 

of the a.c. 

source
 

of
f

Current in a LRC circuit

resonancei

 

LRC Circuit series resonance conditions: 

L CX X=  0 =  

TotalZ R=  
1

2
of

LC
=  

Figure 23: Figures of impendence vs. frequency  

and current resonance 
 

The equation (68) just derived for the total impedance TotalZ  on a LRC series circuit shows that 

Z  varies with the frequency f  of the applied potential difference since LX  and CX  both depend on 

f .The relationships are shown in upper panel of Figure 23.  

LX  and increases with f , ( 2LX fL= ) CX and decreases with f (
1

2
CX

fC
= ), R  is 

assumed to be independent of f  (but it can vary).  

 At a certain frequency, called the resonant frequency of  when L CX X= and TotalZ  has its 

minimum value, being equal to R ( ( )( )2
2

Total L CZ R X X= + − ). The circuit behaves as pure 

i
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resistance since the capacitive reactance and inductive reactance cancel each other and the current i  has a 

maximum value (given by RV
i

R
= ). The phase angle  (given by 

( )
tan

L CX X

R


−
= ) is zero, the applied 

potential difference SV  and the current i  are in phase and there is as said to be resonance. 

 According to equation(68), of  is obtained from TotalZ R= , that is 

L CX X=  (72) 

 By substituting equations (38) and (53) into equation(72), 

1
2

2
o

o

f L
f C




=  (73)  or  
2 24 1of LC =

 
 (74) 

1

2
of

LC
=   (75) 

If L is in henrys and C  in farads, of will be in hertz. 

At resonant frequency of , the physical significant is that the energy transfer to LRC circuit from 

the a.c. source is maximum.  
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Experiment 1: Finding the resonant frequency through curves fitting 

Setup Procedures 
1. Set up the PASCO 850 Universal Interface and the computer. 

2. Connect banana plug patch cords into the ‘OUTPUTS’ port on the PASCO 850 Universal Interface. 

 
Figure 24. Connecting power source of the Interface to the Circuit board as LRC series circuit  

3. Connect the following Voltage Sensors into the interface.  

 
Figure 25. Voltage Sensor in Channel A 

 for measuring p.d. across resistor, RV  

 
Figure 26. Voltage Sensor in Channel B  

for measuring p.d. across inductor LV  

 
Figure 27. Voltage Sensor in Channel C  

for measuring p.d. across capacitor, CV  

 

4. Ensure the circuit is connected to the 100 R =   resistor,  100 FC =  capacitor, 8.2 mHL =  

inductor in series and three voltage sensors with each electronic components 
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Experimental Procedure 
 

 
 

 

Figure 28. Configuration of the LRC 

circuit 

Figure 29(a) Output frequency Panel 

 of signal generator 

  

1. Open the Capstone® working file ‘EXP05_UID.cap.  Click ‘Save Experiment As’ function to save 

your own file which UID should be your/your partner University no.(e.g. EXP5_3333123456.cap) 

2. Select Page 1 and then change the Signal Generator to ‘On’ mode as shown in Fig.29 (a) before 

starting measurement. 

3. Set the Amplitude to 3.000 V and entry corresponding frequency as shown in the worksheet (Table 

1.1). 

4. Click ‘Record’ to start time duration measurement and wait until the end. 

5. Watch the Graphs of potential difference across inductor LV , resistor RV  and capacitor CV versus 

time respectively. All curves are should be a sine function. 

6. Highlight the portion of the data points starting from 0 second. 

7. Click the Fit tool   and fit all curves as “sine fit” 

8. Check whether the computed estimation curve is matching with your data point performance. 

9. Repeat the procedure (8) to record the Amplitude and Phase of sine fitting curve of voltage across 

capacitor, resistor and inductor respectively in the worksheet (Table 1.1). 

 

 

Figure 30  Save Activity As …  

10. Click “snapshot ” to record the picture and name the photo (i.e. 10Hz) 
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11. Click “Delete Last Run” and then select “Delete All Runs” to delete all previous recorded data. 

 
Figure 31 Delete All/Last Data Runs Panel  

12. Repeat the procedure from (2) to (11) with changing the frequency to complete all data record in 

the worksheet (Table 1.1). 

13. Click “Save Experiment as” to save your group file. 

 

Experiment 2: Data Analysis of experiment 1 

Experimental Procedure 
1. Click “Page 2” to activate the start the graph plotting work. 

2. In the windows, two tables are shown.( i.e. Table of the potential difference across the inductor LV

 versus frequency and the potential difference across the capacitor CV

 

versus frequency) 

 

 

Figure 32.  Tables of LV

 

vs. frequency and CV

 

vs. frequency  

3. Entry the Amplitude of LV  and CV  with different frequencies recorded in the Table 1.1 of worksheet . 

4. After entry all  data, two set of data points will show in the graph paper accordingly.  Fit the data 

points of p.d. across inductor by “Fit Tool”  and choose “linear fit”; and the data points of  

p.d. across capacitor by “Fit Tool”  and choose “inverse fit” as shown in figure 33. 

5. Two best fit curves are shown and they intersect at a point. Zoom in the graph to find the detail of the 

intersect point. 

6. Use the “Coordinate Tool”   to read the x and y coordinates of the intersection point (i.e. (x, y)) as 

shown in Figure 34.  

7. Click “Save Experiment As…” to save your group file. 

8. Complete the Table 2.1 to Table 2.3 in the worksheet. 
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Figure 33.  Fitting configuration   Figure 34. Coordinate Tool 

 

Experiment 3: Knowing the properties of the LRC circuit at resonant frequency 

Experimental Procedure 

 
1. Repeat the procedure illustrated in Experiment 1 by using the resonant frequency from Table 2.3, 

and then record all properties of inductor, resistor and capacitor under resonant frequency in the 

Table 3.1. 
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