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1. Introduction

Bosonization. Many giants, 70s to 80s
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(Fermions: A /Bosons:
anti-symmetric under permutation; symmetric under permutation;
represented by Grassmann numbers; represented by complex numbers;
Pauli exclusion principle; Collective modes;
Fermi surface; ... Bose-Einstein condensation;...
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Jordan-Wigner transformation (1928);
sine-Gordon = massive Thirring, Coleman (1975)



2. Bosonization |: exact bosonization from T-L model

Tomonaga-Luttinger model
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infinitely filled states below £
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2. Bosonization |: exact bosonization from T-L model
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back scattering Umklapp
German word for abrupt turn around

Why S 1D SO SpeCia ‘? particle-hole: o DO T Qm particle-particle: k+ q, W, T Qm
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Sénechal, (1999)
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Zheleznyak, Yakovenko and Dzyaloshinskii (1997)



2. Bosonization |: exact bosonization from T-L model

* Particle-hole and particle-particle susceptibility contains the same log: typical in 1D

* In higher dimensions, usually only particle-particle bubble has log scaling, which is the Cooper
logarithm relevant for weak coupling uniform superconductivity.

* Exception, Fermi surface nesting which leads to particle-hole logarithm and hence C/SDW.

Application to 2D: FS nesting + Van Hove singularity (+ sublattice interference effects)
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C
Furukawa, Rice and Nandkishore, Levitov and [sobe, Yuan and Fu (2018) Wu, Thomale and Raghu
Salmhofer (1998) Chubukov (2012) (2023)



2. Bosonization |: exact bosonization from T-L model

Algebraic structure of the (spineless) density operator

_ t (k I+ ill-defined for g = 0,
Prsl9) ; VW () because of infinitely filled states below Fermi level

Pr(q) = Z l//:, (B, (k+q) — 5%0(1//:, (B, (k)) Normal ordering: reference subtraction
k

Alternatively,
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2. Bosonization |: exact bosonization from T-L model

Algebraic structure of the (spineless) density operator

[p1(q), p(=q)] = Z [l//]jl//k_l_q, W]jfl//k’—q]
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. C : . 27V
Free Hamiltonian is bilinear in density operators: H, = 3 Z P (@p.(—q) + p_(q)p_(—q))
qg>0



2. Bosonization |: exact bosonization from T-L model

Hamiltonian in the bosonized form (spin-charge separation) Charge
H, = Z Prs(@P,(—q) 1, =' z (Ve + 8414 + 841 (D (—q)
0,7,s g, .
Hy =), [(;;Lq 811,995 + 821405 ~51Pr (DP—r (=) i._q__fr_gd?_z_”f{_--‘.g.l.”-‘{ *+ 821Pr (D=~ )]
+§ (841055 + 84105 — )P @DPr. A~ ) H = Z [(mvE + 84|,g — 841 q)pr(Q)Pr( q)
418

q.r
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Introducing:
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pr Bl \/5 pr T \/5
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JW o [m; K v Spin and charge sectors have different
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2. Bosonization |: exact bosonization from T-L model

In momentum space

=—Z( L ()T (k) + — k%b,,(k)qby(—k))

27K
¢< 0 — iy [ 2240 (= iy
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1%

Bogoliubov transformation:

_ L ‘k‘¢<k>+z | =
yk \/5 |k‘ 7, yk

L
\/_
) = | 22, ryt), Tk = —

Diagonalized Hamiltonian:

HU=V,,Z LIFAZ
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2. Bosonization |: exact bosonization from T-L model

From Hamiltonian to Lagrangian:

L2 v, K 5 V 5 p2 1 9)
_ v U H — _k
H, J'_m dx [ > (I, (x))" + 2K (0, P, (x)) ] (x, p) o + 5 X
(¢, (), 11, (y)] = id(x —y) = 1 1
, | L(x,x) =px—H(x,p) = mez — Ekx2
_ . 2 2 :
Z [¢1/] — ZJZ'KU (Vy (af¢1/) + Vy(ax¢1/) ) p = mx

Free massless boson field (conformal field theory in 1+1 D):

S = szx(V¢)2



2. Bosonization |: exact bosonization from T-L model

What we’ve done so far is to express the theory in terms of boson field. A complete
theory should also establish the relation between fermion and boson field.

U

r,S

W, o = Iim

exp| — i [r(¢c(x, 7) + s¢p(x, 7)) + (0.(x, T) + 50,(x, T))]
a0 /2 7x 2

X
81/( x) — ]z'l[ dx’ Hv( x’ ) Heidenreich, Seiler and Uhlenbrock, 1980
Haldane, 1981

Now we can discuss backscattering g; | Z l//: +l//i,,,_l//r,_l//_,,,+

r
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Z l//;,#/fjr,—l/fr, Y r4 €

=2 COS(\/g b,) Only ¢ (x, 7) remains.



2. Bosonization |: exact bosonization from T-L model

| 2811
S = dxdr | —(0.¢.)° +v.(0.0.)* | + ’ JdXdTCOS 3
27K, [ ’ vs( )" V0P (2ra)? (V80
81,1

Lo I 7. TR

= — Jd (Vo) + — Jd X COS g Sine-Gordon model 277
2 a2

p=+/87K,
Kosterlitz-Thouless RG: | |

Similar analysis applies for charge

Luther-Emery Luttinger liquid

liquid sector when g, is included.

y)
ST b
K. <1 K > 1



3. Bosonization IlI: Dzyaloshinskii-Larkin loop-cancellation theorem.

Introducing bosons via Hubbard-Stratonovich transformation:

0” 1
ZL(x,7) = (0, — > — — Wy + —[ w(X)w(x)V(x — x)ypx)y(x)
m 2 ).
H.S. tranformation
] 0, 1 B o
ZL(x,7) = y(0, — T Wy + 5[ )V (x = xX)Pp(X) — ip(X)py

Linearizing the dispersion
Integrating out fermions

L(x,7) = %[ )V 1(x — xp(x") + trin (



3. Bosonization IlI: Dzyaloshinskii-Larkin loop-cancellation theorem.

O, — 1Vp0y — i) 0 . . . .
trin 0 0+ v, — i = trin(d, — ivgd, — i¢p) + trIn(9, + ivg0,. — i)

Loop expansion near the mean field solution:

o0

1
trIn(d, — ivs0, — igh) = trin(d, — iv;9,) — ¥ ;tr(Gﬂiqb)” G® = (0, F iv0,)"!
n=1

Exact when with fermion linear dispersion. Bosons are bilinear and free  Dzyaloshinskii and Larkin (1973)



3. Bosonization IlI: Dzyaloshinskii-Larkin loop-cancellation theorem.

Full Fermion Green’s functions:

Dy, w21 ¢lwx, Dy (0)expl-Slw, v, ¢l 1
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D KK Lee and Y Chen, 1988 [ V Yurkevich, 2022



3. Bosonization IlI: Dzyaloshinskii-Larkin loop-cancellation theorem.

If we know &[x, 7, ¢], then the fermion properties are determined by the boson field ¢

f Dy, wlw(x, o)w(x', t)e™ [0 +E—idly

?[X, T; X ’ T ” ¢] — @[l/_f, l/j]e—fl/_/[af+§_l¢]l//

(0, — ivp0, — ip(x, 7)) G X, 7; X, T, p] = o(x — x")o(r — 7')
(0, + 1vp0, —ip(x,7) G _[x,7; X, 7/, p] = o(x — x")o(r — ')

The solutions are written as the following ansatz
G [x,;x, 7, ] = GOUx — x', 7 — )"V @ [x,;x, 7, ] = GOx — x', T — 1) WD)

Substituting back to the equations leads to G, = (0, Fivg0,)"

(az' o ivFax)f(xa T) — ¢(X, T)

Schwinger, 19062



3. Bosonization IlI: Dzyaloshinskii-Larkin loop-cancellation theorem.

Bosonization of this procedure can be generalized to include interactions with retardation effect
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Direct generalization to higher dimension
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Bosonization of coupled electron-phonon systems
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Institut fiir Theoretische Physik, Universitat Gottingen, Bunsenstrasse 9, D-37073 Gottingen, Germany

Received: 27 July 1995/ Revised version: 25 October 1995

PHYSICAL REVIEW RESEARCH 4, 033131 (2022)

Nonlinear bosonization of Fermi surfaces: The method of coadjoint orbits
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4. Bosonization Ill: Haldane’s phenomenological approach

Linear dispersion is only a good approximation in low energy limit.
Nonlinearity is always present.

Effective Harmonic-Fluid Approach to Low-Energy Properties
of One-Dimensional Quantum Fluids

F. D. M. Haldane
Department of Physics, University of Southevn California, Los Angeles, California 90007,
and Institut Laue -Langevin, F-38042 Grenoble -Cedex, France
(Received 29 December 1980)

A universal description of the low-energy properties of one-dimensional quantum fluids,
based on a harmonic theory of long-wavelength density fluctuations with use of renormal-
ized parameters, is outlined. The structure of long-distance correlations of a spinless
fluid is obtained, showing the essential similarity of one-dimensional Bose and Fermi

fluids. The results are illustrated by application to the one-dimensional Bose fluid with
O0-function interaction.

PACS numbers: 67.40.Db, 05.30.-d

Non-linear dispersion — interacting bosons & the presence of higher
order harmonics: 3k, Sk, ... branches



4. Bosonization Ill: Haldane’s phenomenological approach

P(x)
e E— .
127,71 T . i S[(x) ] o0(x — xi)
- ' - E X)—nr| =
1: 5—funct101;( ) (I )7 S— : 0 p(x)
X — Xy '
S = Y S f(xy) =0
2 fery]

X0

p() = ), 8x = x)

coe Xy X Xipg -

2 : Poisson summation

0, (x)
f(1) < f(s) = JdteiZ”S7(t) : plx) = Z - olgp(x)/m — n]
Zf(n) = Z f(m) n (1) = [t — p(x)/ 7] < f(s) = 2¢W

0 .
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4. Bosonization Ill: Haldane’s phenomenological approach

Since p(x) = PT(x)¥(x), each operator ¥(x) can be understood as square root of p(x),

accompanied by a phase factor ¢'”™. We have [10,.¢(x), O(x")] = imo(x — X').

Square root of a o-function is still a o-function.

Bosons: \PB(x) ~ \/ax¢(x)ei9(x) Z e2m9()  [Eermions: ‘PF(X) ~ \/6x¢(x)ei9(x) Z o {2mE1)g(x)

me/

mes

* Haldane’s result shows all harmonics have the same weight, but in reality the

+k;. (m = 0) branches are the main contribution.

Instead of using o-function, we can use

1 (x—xi)2
plx)= ) ——e
~ A/ 7a

We can obtain a weight factor e™

m?/A
For small A, only m = 0 should be kept.

Similarity to quantum oscillations (Lifshitz-Kosevich)



5. Spectral function from phenomenological bosonization

RESEARCH

SUPERCONDUCTIVITY

Anomalously strong near-neighbor attraction in
doped 1D cuprate chains

Zhuoyu Chen?3+, Yao Wang*t, Slavko N. Rebec%>, Tao Jia>, Makoto Hashimoto®, Donghui Lu®,
Brian Moritz', Robert G. Moore'’, Thomas P. Devereaux>®*, Zhi-Xun Shen™%>°*

In the cuprates, one-dimensional (1D) chain compounds provide a distinctive opportunity to understand
the microscopic physics, owing to the availability of reliable theories. However, progress has been limited
by the challenge of controllably doping these materials. We report the synthesis and spectroscopic
analysis of the 1D cuprate Ba,.,Sr,Cu0O3.5 over a wide range of hole doping. Our angle-resolved
photoemission experiments reveal the doping evolution of the holon and spinon branches. We identify a
prominent folding branch whose intensity fails to match predictions of the simple Hubbard model. An
additional strong near-neighbor attraction, which may arise from coupling to phonons, quantitatively
explains experiments for all accessible doping levels. Considering structural and quantum chemistry
similarities among cuprates, this attraction may play a similarly important role in high-temperature
cuprate superconductors.

Phys. Rev. Lett. 127, 197003; arXiv:2210.09288,; ...
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5. Spectral function from phenomenological bosonization

As nearest neighbor interaction becomes more attractive, holon-folding
branch gets enhances, while 3k branch is washed out gradually.

[s this true? If yes then why?

Spectral properties of 1D extended Hubbard model from bosonization and
time-dependent variational principle: applications to 1D cuprates

Hao-Xin Wang,!' * Yi-Ming Wu,»'% * Yi-Fan Jiang,>>" and Hong Yao!'*

! Institute for Advanced Study, Tsinghua University, Beijing, China
> Stanford Institute for Theoretical Physics, Stanford University, Stanford, California 94305, USA
3School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China



5. Spectral function from phenomenological bosonization

X = 14%, = 100

1D extended Hubbard model . o .
‘@) v=1 ° “[b) v=0
4
_ TA 2 T78N v v 2 UVSN s OF-----=#"_ _______
= thmc]G+ UZ Tnll+VZnn =0 .
(ij).,0 V) h

3 -2
Wesetr =1 and U = 8¢. V is chosen to

range from —2¢ to about 4¢

Doping factorx = 1 — N/L

Time-dependent variational principle
calculation, excellent work done by
Hao-Xin Wang




5. Spectral function from phenomenological bosonization

intensity (arb. units)

B
— 8,z = 14% (a) Ujs,véq (b)| [U=8V=-17(c)
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1.0t
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3
o 0.09 0 (Hubbard)
2 . TN /\L AR
7}
'E J\ K —\_ ()\-14 — /0'14\ ) - 0.2t
= =
- k 0.5 ﬁ — 0.4t
— N 0.2 0.2 >
3 0 %
= ~—\_ 0.24 0.24 2 — 0.6t
A e 0.28 0.28
1 . - ' . ' — 0.8t
—— 0.33 0.33
—1. — 1.0t
N <1.4237 0.37 0.37
k 1 & exp. 14%
N (\\Q/ V q/‘?d & 0 /2 n O /2 T -ol.5 (l) 0.15



5. Spectral function from phenomenological bosonization

The spectral function A(k, @) can be calculated from the retarded Green’s function

Gf(x, 1= —10 () <{‘PFT(X, 1), ‘If;T (0,0) }> — Z Gﬁ(zmﬂ)kF(x, f)

Yv.m
| 1 a’ |
GK (x,1) ~ — O(t)e“*r*Re
1.(2m+ kg H [a + i(u,t — x)["? | (o + iu t)? + x?

V=p,0
WA |
Yvom — = Cme'l'__ZCm Wlth Cm:2m+1
; ] KD

* For system with SU(2) symmetry K = 1, thus only y, , affect the spectral properties



5. Spectral function from phenomenological bosonization

Ak, ) = — —ImG®(k, ), need Fourier transform from G®(x, 1)

o hf: Aylkp+ g, w) ~ |0+ v gl
» 3kp: A\Gkp+q,0) ~ |@w—v.qg|"

yc,m

0.5

0.4}
0.3F
0.2}

0.1}

JU

1.0 ¢

A typical weight of the hf or 3k branch scales

0.9F
® v 08F
®. 07}

®- 066
0.5F

-15 -1.0 -05 0.0 0.5
(b)

as w’, with w being a small derivation from
the excitation center (w = £ v.q), and a larger
y yields a smaller weight.

As V changes from repulsion to

attraction, K p Increases.
As a result,

v.odecreases -> hf gets enhanced

Y.1 increases -> 3k, diminishes



6. Conclusion and outlook

@ v=1 Jl | 1°

Thank youl




