

Unconventional SC & Non-Fermi liquids -- Eliashberg theory

Yu Li (李宇) UCAS, KITS 2022-12-16

Unconventional superconductivity v.s. Non-Fermi liquids

- Unconventional SC usually emerges out near the QCP and accompanying with non-Fermi liquid behaviors.
- Non-Fermi liquid (NFL): Anomalous power-law metallic transport properties deviating from the Landau's Fermi liquid theory (Δρ∝T², C_V∝T).

Outline

Part 1 (this week)

- I. Introduction to unconventional superconductivity
- II. Eliashberg theory and its applications
- III. Non-Fermi-liquids & advance in its pairing

Part 2 (next week)

• Two-stage SC in Hatsugai-Kohmoto-BCS model

I. Introduction to unconventional SC

- Phenomenology of conventional & unconventional SC
- Generalized BCS theory & Symmetry classification of pairing symmetry

Superconductivity & BCS theory

- The electrons with opposite momentum and opposite spin pair together under the attractive interaction, which formed a pair bound state, i.e., **Cooper pair**.
- In conventional SCs, the effective **attractive interaction** induced by the electron-phonon coupling.

Phenomenology of conventional SC

zero resistance

In 1911, Kamerlingh Onnes found that the resistance of a mercury sample disappeared suddenly below a critical temperature

Upper critical field

Soon afterwards, Onnes discovered that relatively small magnetic fields destroy superconductivity and that the critical magnetic field is a function of temperature.

Specific heat

Further, the electronic specific heat increases discontinuously at T_c and vanishes exponentially near T=0.

This and other evidence, indicates the existence of an energy gap in the single particle electronic energy spectrum.

Isotope effect

And it has been recently discovered that the transition temperature varies with the mass of the ionic lattice as

$\sqrt{M} T_c = \text{constant}$

This is known as the isotope effect and indicates that the electron-phonon interaction is implicated in the transition into the superconducting state.

Meissner effect

In 1933 Meissner and Ochsenfeld discovered what has come to be known as the Meissner effect: below the critical temperature, the magnetic field is expelled from the interior of the superconductor.

(L. N. Cooper and D. Feldman (eds.), BCS: 50 years (2011).)

Elemental superconductors

M. Debessai, T. Matsuoka, J.J. Hamlin, W. Bi, Y. Meng, K. Shimizu, and J.S. Schilling, J. Phys.: Conf. Series **215**, 012034 (2010). High pressure data for Ca and Be: K. Shimizu email from 9 Dec 2013.

CeCu₂Si₂: 1st unconventional superconductor (1979)

F. Steglich

resistivity (arb. units)

 VOLUME 43, NUMBER 25
 PHYSICAL REVIEW LETTERS
 17 DECEMBER 1979

 Superconductivity in the Presence of Strong Pauli Paramagnetism: CeCu₂Si₂
 F. Steglich

 Institut für Festkörperphysik, Technische Hochschule Darmstadt, D-6100 Darmstadt, West Germany
 and

 J. Aarts, C. D. Bredl, W. Lieke, D. Meschede, and W. Franz
 II. Physikalisches Institut, Universität zu Köin, D-5000 Köin 41, West Germany

 and
 II. Schäfer

 Eduard-Zintl-Institut, Technische Hochschule Darmstadt, D-6100 Darmstadt, West Germany

 (Received 10 August 1979; revised manuscript received 7 November 1979)

The size of the specific-heat jump at T_c , in proportion to γT_c , suggests that Cooperpair states are formed by these heavy fermions. Since the Debye temperature, Θ , is of the order of 200 K,⁵ we find $T_c < T_F < \Theta$ with $T_c/T_F \simeq T_F/\Theta$ $\simeq 0.05$. This suggests that CeCu₂Si (i) behaves as a "high-temperature superconductor" and (ii) cannot be described by conventional theory of superconductivity which assumes a typical phonon frequency $k_B\Theta/h \ll k_BT_F/h$, the characteristic frequency of the fermions.

- 2.0 CeCu₂Si₂ CeCu₂Si₂ K²) C/T (J/mole units) B (Tesla) • 0 T (K) 1.0 arb A 01 1.3 1.4 05 06 07 0.8 1.2 0.9 0.4 0.6 temperature (K T(K)
- The 1st unconventional superconductor.
- Specific heat jump $(\Delta C/\gamma T)_{T_c} \sim O(1)$: heavy quasiparticle pairing.
- $T_c/T_F \approx 0.05$, much higher than BCS case (~10⁻⁵): high-density participation in SC.
- Debye temperature $\Theta > T_{\rm F}$: beyond BSC theory (in BCS case, $\Theta/T_{\rm F} \ll 1$).

Cuprates & Iron-pnictides

• d-wave SC

.

- Various competing orders: Pseudogap? CDW? SDW? PDW? Nematicity?...
- Pairing mechanism: spinfluctuation? RVB? Loopcurrent? Polaron?...

s[±]-wave SC

....

- **Competing orders**: SDW, Nematicity, ...
- Pairing mechanism: spin-fluctuation? Orbital-selective?...

Discovery history of typical superconductors

- Twisted bilayer/trilayer/double-bilayer graphene
- Nickelates
- Kagome SCs
-

Conventional SC v.s. Unconventional SC

	Conventional SC	Unconventional SC			
Normal states	Metal (Fermi liquid)	Bad metal (Non-Fermi liquid)			
Pairing mechanism	Electron-phonon interaction	No consensus (Strong electron- electron interaction)			
Pairing symmetry	s-wave (BCS)	d _{x2-y2} -wave (Cuprates, CeCoIn ₅ ,) s [±] -wave (Iron-pnictides) p-wave (Sr ₂ RuO ₄ ?,)			
Dimensionality	3D	Usually quasi-2D			
Relation to magnetism	No magnetism (exclusive)	SC usually emerging near the AFM boundary, and sometimes can coexist .			
∆(k)	S	$\begin{array}{cccccccccccccccccccccccccccccccccccc$			

Diversity of phase diagrams in HF SCs

Generalized BCS mean-field theory

- Hamiltonian with generalized pairing interaction $H = \sum_{k,\sigma} \xi_k c^{\dagger}_{k\sigma} c_{k\sigma} + \frac{1}{2} \sum_{k,k'} \sum_{\sigma_1,\sigma_2,\sigma_3,\sigma_4} V^{\sigma_1 \sigma_2 \sigma_3 \sigma_4}_{k,k'} c^{\dagger}_{k\sigma_1} c^{\dagger}_{-k\sigma_2} c_{-k'\sigma_3} c_{k'\sigma_4},$
- Introduce the mean-field $\langle c_{-k\sigma_1}c_{k\sigma_2} \rangle$,

$$H = \sum_{\boldsymbol{k},\sigma} \xi_{\boldsymbol{k}} c_{\boldsymbol{k}\sigma}^{\dagger} c_{\boldsymbol{k}\sigma} - \frac{1}{2} \sum_{\boldsymbol{k}} \sum_{\sigma_1,\sigma_2} \left(\Delta_{\boldsymbol{k}}^{\sigma_1 \sigma_2} c_{\boldsymbol{k}\sigma_1}^{\dagger} c_{-\boldsymbol{k}\sigma_2}^{\dagger} + \Delta_{\boldsymbol{k}}^{\sigma_1 \sigma_2 *} c_{-\boldsymbol{k}\sigma_2} c_{\boldsymbol{k}\sigma_1} \right) + K, \qquad \text{where} \quad K = -\frac{1}{2} \sum_{\boldsymbol{k},\boldsymbol{k}'} \sum_{\sigma_1,\sigma_2,\sigma_3,\sigma_4} \left\langle c_{\boldsymbol{k}\sigma_1}^{\dagger} c_{-\boldsymbol{k}\sigma_2}^{\dagger} \right\rangle \left\langle c_{-\boldsymbol{k}'\sigma_3} c_{\boldsymbol{k}'\sigma_4} \right\rangle.$$

operalized can equation

- Define the SC gap function $\Delta_{k}^{\sigma_{1}\sigma_{2}} = -\sum_{k'}\sum_{\sigma_{3},\sigma_{4}} V_{k,k'}^{\sigma_{1}\sigma_{2}\sigma_{3}\sigma_{4}} \langle c_{-k'\sigma_{3}}c_{k'\sigma_{4}} \rangle.$
- Writing in the matrix form and expanding in Pauli's matrices

$$\hat{\Delta}_{k} = \begin{pmatrix} \Delta_{k}^{\uparrow\uparrow} & \Delta_{k}^{\uparrow\downarrow} \\ \Delta_{k}^{\downarrow\uparrow} & \Delta_{k}^{\downarrow\downarrow} \end{pmatrix} = \left[\begin{pmatrix} \Delta_{k}^{\uparrow\downarrow} - \Delta_{k}^{\downarrow\uparrow} \\ 2 \end{pmatrix} \hat{\sigma}_{0} + \begin{pmatrix} -\Delta_{k}^{\uparrow\uparrow} + \Delta_{k}^{\downarrow\downarrow} \\ 2 \end{pmatrix} \hat{\sigma}_{x} + \begin{pmatrix} -i\frac{\Delta_{k}^{\uparrow\uparrow} + \Delta_{k}^{\downarrow\downarrow} }{2} \end{pmatrix} \hat{\sigma}_{y} + \begin{pmatrix} \Delta_{k}^{\uparrow\downarrow} + \Delta_{k}^{\downarrow\uparrow} \\ 2 \end{pmatrix} \hat{\sigma}_{z} \right] i\hat{\sigma}_{y} = (\phi_{k}\hat{\sigma}_{0} + d_{k} \cdot \boldsymbol{\sigma}) i\hat{\sigma}_{y},$$

$$\stackrel{\hat{\Delta}_{k} = \begin{cases} \phi_{k}i\hat{\sigma}_{y}, \quad \text{(spin-singlet pairing)} \\ (d_{k} \cdot \boldsymbol{\sigma}) i\hat{\sigma}_{y}, \quad \text{(spin-triplet pairing)} \end{cases} \xrightarrow{\text{Pauli's exclusion principle}} (\hat{\Delta}_{k} = -\hat{\Delta}_{-k}^{T}) \xrightarrow{\phi_{k} = \phi_{-k}, \quad d_{k} = -d_{-k}. \\ (even-parity) \quad (odd-parity) \end{cases}$$

• In Nambu's basis, $\Psi_{k}^{\dagger} = \left(\begin{array}{cc} c_{k\uparrow}^{\dagger}, & c_{k\downarrow}^{\dagger}, & c_{-k\uparrow}, & c_{-k\downarrow} \end{array} \right)$,

$$H = \frac{1}{2} \sum_{k} \Psi_{k}^{\dagger} \begin{pmatrix} \xi_{k} \hat{\sigma}_{0} & \hat{\Delta}_{k} \\ -\hat{\Delta}_{-k}^{*} & -\xi_{k} \hat{\sigma}_{0} \end{pmatrix} \Psi_{k} + K. \xrightarrow{\Psi_{k} = \hat{U}_{k} \Phi_{k}, \\ \hline \hat{U}_{k} = \begin{pmatrix} u_{k} \hat{\sigma}_{0} & \hat{v}_{k} \\ \hat{v}_{-k}^{*} & u_{-k}^{*} \hat{\sigma}_{0} \end{pmatrix}} H = \frac{1}{2} \sum_{k} \Phi_{k}^{\dagger} \begin{pmatrix} \hat{E}_{k} & 0 \\ 0 & -\hat{E}_{-k} \end{pmatrix} \Phi_{k} + K, \implies \Delta_{k}^{\sigma_{1}\sigma_{2}} = -\sum_{k'} \sum_{\sigma_{3},\sigma_{4}} V_{k,k'}^{\sigma_{1}\sigma_{2}\sigma_{3}\sigma_{4}} \frac{\tanh\left(\frac{\beta E_{k'}}{2}\right)}{2E_{k'}} \Delta_{k'}^{\sigma_{3}\sigma_{4}} \frac{\Delta_{k'}^{\sigma_{3}\sigma_{4}}}{2E_{k'}} \Delta_{k'}^{\sigma_{3}\sigma_{4}} \frac{\operatorname{Constant}}{2E_{k'}} \frac{\operatorname{Constant}}{2E_{k'}} \Delta_{k'}^{\sigma_{4}\sigma_{4}} \frac{\operatorname{Constant}}{2E_{k'}} \frac{\operatorname{Constant}}{2E_{k'}} \frac{\operatorname{Constant}}{2E_{k'}} \Delta_{k'}^{\sigma_{4}} \frac{\operatorname{Constant}}{2E_{k'}} \frac{\operatorname$$

Symmetry classification of pairing symmetry (Δ_k)

Symmetry breaking in superconductors

$\mathcal{G} = G \otimes SO(3) \otimes U(1) \otimes T,$

Crystal point Time-reversal Spin rotation Gauge phase group group symmetry group group

Only break U(1) symmetry: conventional SC s-wave (A_{1g})

Break U(1)+other symmetries: unconventional SC d-wave (Cuprates, CeCoIn₅), p-wave (UTe₂?), d+id-wave (URu₂Si₂),

S

g

р

р р

р

p+ip

d_{x2-y2} $\mathsf{d}_{\mathsf{x}\mathsf{y}}$

 $d_{xz} + id_{vz}$

	even parity	odd parity					Ch	aract	er t	able	for	D _{4h} g	grou	р
			Γ		2 <i>C</i> ₄	<i>C</i> ₂	$2C'_{2}$	$2C_{2}''$	Ι	$2S_4$	σ_h	$2\sigma_v$	$2\sigma_d$	Basis function
Fermion exchange	$\psi(\boldsymbol{\kappa}) = \psi(-\boldsymbol{\kappa})$	$\boldsymbol{a}(\boldsymbol{\kappa}) = -\boldsymbol{a}(-\boldsymbol{\kappa})$	A_1	g 1	1	1	1	1	1	1	1	1	1	$\psi = 1$
Orbital rotation	$\hat{g}\psi(oldsymbol{k})=\psi(R_goldsymbol{k})$	$\hat{g}oldsymbol{d}(oldsymbol{k}) = oldsymbol{d}(R_goldsymbol{k})$	A_2	<i>g</i> 1	1	1	-1	-1	1	1	1	-1	-1	$\psi = k_x k_y (k_x^2 - k_y^2)$
			B_1	$g \mid 1$	-1	1	1	-1	1	-1	1	1	-1	$\psi = k_x^2 - k_y^2$
Spin rotation	$\hat{g}\psi(oldsymbol{k})=\psi(oldsymbol{k})$	$\hat{g}oldsymbol{d}(oldsymbol{k})=R_{g}oldsymbol{d}(oldsymbol{k})$	B_2	$g \mid 1$	-1	1	-1	1	1	-1	1	-1	1	$\Psi = k_x k_y$
			E_g	2	0	-2	0	0	2	0	-2	0	0	$\Psi = \{k_x k_z, k_y k_z\}$
Time-reversal	$K\psi(\boldsymbol{k}) = \psi^*(-\boldsymbol{k})$	$K\boldsymbol{d}(\boldsymbol{k}) = -\boldsymbol{d}^*(-\boldsymbol{k})$	A_1	<i>u</i> 1	1	1	1	1	-1	-1	-1	-1	-1	$\vec{d} = \hat{x}k_x + \hat{y}k_y$
Inversion	$\hat{I}_{1/2}(\mathbf{k}) = i/(-\mathbf{k})$	$\hat{I}\boldsymbol{d}(\boldsymbol{k}) = \boldsymbol{d}(-\boldsymbol{k})$	A_2	<i>u</i> 1	1	1	-1	-1	-1	-1	-1	1	1	$\vec{d} = \hat{x}k_y - \hat{y}k_x$
	$\varphi(\mathbf{n}) = \varphi(\mathbf{n})$		B_1	<i>u</i> 1	-1	1	1	-1	-1	1	- 1	- 1	1	$\vec{d} = \hat{x}k_x - \hat{y}k_y$
U(1)-gauge	$\widehat{\Phi}\psi(m{k})=e^{i\phi}\psi(m{k})$	$\widehat{\Phi} oldsymbol{d}(oldsymbol{k}) = e^{i \phi} oldsymbol{d}(oldsymbol{k})$	B_2	<i>u</i> 1	-1	1	-1	1	-1	1	-1	1	- 1	$\vec{d} = \hat{x}k_y + \hat{y}k_x$
			$ E_{u} $	2	0	-2	0	0	-2	0	2	0	0	$\vec{d} = \{\hat{z}k_x, \hat{z}k_y\}$

M. Sigrist, AIP Cof. Proc. 78, 165 (2005).

Visualization of typical pairing states & nodes

the **k** points near the Fermi surfaces.)

Physical consequences of the nodes in Δ_k

Density of states

Temperature behaviors of typical physical quantities for different nodes in SC (T<<T_c)

Physical quantities	Nodeless	Line nodes	Point nodes
Specific heat $C(T)$	$T^{-3/2}e^{-\Delta/T}$	T^2	T^3
London penetration depth $\lambda(T)$	$T^{-3/2}e^{-\Delta/T}$	Т	T^2
NMR $1/T_1$	Т	<i>T</i> ³	T^5
Thermal conductivity $\kappa(T)$	$T^{-3/2}e^{-\Delta/T}$	T^2	T^3

$$N(\omega) = \begin{cases} 0, & \text{(nodeless)} \\ \propto \omega, & \text{(line nodes)} \\ \propto \omega^2, & \text{(point nodes)} \end{cases}$$

II. Eliashberg theory & its applications

- Eliashberg theory
- Quantum critical spin-fluctuation mechanism
- Pairing symmetry in heavy-fermion SC

Eliashberg theory (1)

• Electron-phonon coupled Hamiltonian (including screened Coulomb interactions)

$$H = \sum_{\boldsymbol{k}} \xi_{\boldsymbol{k}} \psi_{\boldsymbol{k}}^{\dagger} \tau_{3} \psi_{\boldsymbol{k}} + \sum_{\boldsymbol{q},\nu} \Omega_{\boldsymbol{q}\nu} b_{\boldsymbol{q}\nu}^{\dagger} b_{\boldsymbol{q}\nu} + \sum_{\boldsymbol{k},\boldsymbol{k}',\nu} g_{\boldsymbol{k}\boldsymbol{k}'\nu} \phi_{\boldsymbol{k}-\boldsymbol{k}'\nu} \psi_{\boldsymbol{k}'}^{\dagger} \tau_{3} \psi_{\boldsymbol{k}}$$
$$+ \sum_{\substack{\boldsymbol{k}_{1},\boldsymbol{k}_{2},\boldsymbol{k}_{3},\boldsymbol{k}_{4}\\\sigma,\sigma'}} \langle \boldsymbol{k}_{1},\boldsymbol{k}_{2} | V_{c} | \boldsymbol{k}_{3},\boldsymbol{k}_{4} \rangle \left(\psi_{\boldsymbol{k}_{1}}^{\dagger} \tau_{3} \psi_{\boldsymbol{k}_{4}} \right) \left(\psi_{\boldsymbol{k}_{2}}^{\dagger} \tau_{3} \psi_{\boldsymbol{k}_{3}} \right) \delta_{\boldsymbol{k}_{1}+\boldsymbol{k}_{2},\boldsymbol{k}_{3}+\boldsymbol{k}_{4}}$$

where the Nambu spinor $\psi_{k}^{\dagger} = (c_{k\uparrow}^{\dagger}, c_{-k\downarrow})$, and the phonon field operator $\phi_{q\nu} = b_{q\nu} + b_{-q\nu}^{\dagger}$

• Green's functions

$$\begin{array}{ll} \text{Electron} & \mathcal{G}\left(\boldsymbol{k},\tau\right) = -\left\langle PT_{\tau}\left[\psi_{\boldsymbol{k}}\left(\tau\right)\psi_{\boldsymbol{k}}^{\dagger}\left(0\right)\right]\right\rangle = \left(\begin{array}{cc} G_{\boldsymbol{k}\uparrow}\left(\tau\right) & F_{\boldsymbol{k},\uparrow\downarrow}\left(\tau\right) \\ \overline{F}_{\boldsymbol{k},\downarrow\uparrow}\left(\tau\right) & -G_{-\boldsymbol{k}\downarrow}\left(-\tau\right) \end{array}\right), \\ \\ \text{Phonon} & D_{\nu}\left(\boldsymbol{q},\tau\right) = -\left\langle T_{\tau}\left[\phi_{\boldsymbol{k}\nu}\left(\tau\right)\phi_{\boldsymbol{k}\nu}^{\dagger}\left(0\right)\right]\right\rangle, \end{array}$$

Perturbation expansion

$$\mathcal{G}(\boldsymbol{k},\tau) = -\frac{\int D\psi D\bar{\psi}\psi_{\boldsymbol{k}}(\tau)\,\bar{\psi}_{\boldsymbol{k}}(0)\,e^{-S}}{\int D\psi D\bar{\psi}e^{-S}} = -\frac{\frac{1}{Z_0}\int D\psi D\bar{\psi}\psi_{\boldsymbol{k}}(\tau)\,\bar{\psi}_{\boldsymbol{k}}(0)\,e^{-S_{0}-S_{int}}}{\frac{1}{Z_0}\int D\psi D\bar{\psi}e^{-S_0-S_{int}}}$$
$$= -\left\langle PT_{\tau}\left[\psi_{\boldsymbol{k}}(\tau)\,\psi_{\boldsymbol{k}}^{\dagger}(0)\,e^{-S_{int}}\right]\right\rangle_{0,\text{connected}} = -\left\langle PT_{\tau}\left[\psi_{\boldsymbol{k}}(\tau)\,\psi_{\boldsymbol{k}}^{\dagger}(0)\sum_{n=0}\frac{\left(-S_{int}\right)^n}{n!}\right]\right\rangle_{0,\text{connected}}$$

• Dyson's equation

 $\left[\mathcal{G}\left(\boldsymbol{k},i\omega_{n}\right)\right]^{-1}=\left[\mathcal{G}_{0}\left(\boldsymbol{k},i\omega_{n}\right)\right]^{-1}-\hat{\Sigma}\left(\boldsymbol{k},i\omega_{n}\right)$

Eliashberg theory (2)

• Self-energy $\hat{\Sigma}(\boldsymbol{k}, i\omega_n) = \hat{\Sigma}_{ph}(\boldsymbol{k}, i\omega_n) + \hat{\Sigma}_C(\boldsymbol{k}, i\omega_n),$

$$\hat{\Sigma}_{ph}\left(\boldsymbol{k},i\omega_{n}\right) = -\frac{1}{\beta}\sum_{\boldsymbol{k}',i\omega_{m},\nu}|g_{\boldsymbol{k},\boldsymbol{k}',\nu}|^{2}D_{\nu}\left(\boldsymbol{k}-\boldsymbol{k}',i\omega_{n}-i\omega_{m}\right)\tau_{3}\mathcal{G}\left(\boldsymbol{k}',i\omega_{m}\right)\tau_{3},$$
$$\hat{\Sigma}_{C}\left(\boldsymbol{k},i\omega_{n}\right) = -\frac{1}{\beta}\sum_{\boldsymbol{k}',i\omega_{m}}V_{C}\left(\boldsymbol{k}-\boldsymbol{k}'\right)\tau_{3}\mathcal{G}\left(\boldsymbol{k}',i\omega_{m}\right)\tau_{3},$$

• Expanding the self-energy in Pauli matrices as

$$\hat{\Sigma}(\boldsymbol{k}, i\omega_n) = \left[1 - Z(\boldsymbol{k}, i\omega_n)\right] i\omega_n \tau_0 + \eta(\boldsymbol{k}, i\omega_n) \tau_3 + \phi(\boldsymbol{k}, i\omega_n) \tau_1 + \bar{\phi}(\boldsymbol{k}, i\omega_n) \tau_2$$

• Then,
$$\mathcal{G}_{k}^{-1} = \mathcal{G}_{0,k}^{-1} - \hat{\Sigma}_{k}$$

 $= i\omega_{n}Z_{k}\tau_{0} - (\xi_{k} + \eta_{k})\tau_{3} - \phi_{k}\tau_{1} - \bar{\phi}_{k}\tau_{2} \longrightarrow \mathcal{G}_{k} = \frac{1}{\Theta_{k}} \begin{pmatrix} i\omega_{n}Z_{k} + (\xi_{k} + \eta_{k}) & \phi_{k} - i\bar{\phi}_{k} \\ \phi_{k} + i\bar{\phi}_{k} & i\omega_{n}Z_{k} - (\xi_{k} + \eta_{k}) \end{pmatrix}$
 $= \begin{pmatrix} i\omega_{n}Z_{k} - (\xi_{k} + \eta_{k}) & -\phi_{k} + i\bar{\phi}_{k} \\ -\phi_{k} - i\bar{\phi}_{k} & i\omega_{n}Z_{k} + (\xi_{k} + \eta_{k}) \end{pmatrix}, \qquad \Theta_{k} = \det \mathcal{G}_{k}^{-1} = (i\omega_{n}Z_{k})^{2} - (\xi_{k} + \eta_{k})^{2} - \phi_{k}^{2} - \bar{\phi}_{k}^{2}.$

• Physical meaning of the matrix elements in self-energy

 Z_k -- Renormalization function (>1); η_k -- Chemical potential shift; $\phi_k - i\bar{\phi}_k$ -- Anomalous self-energy.

Non-interacting Green's function $\mathcal{G}_0(\mathbf{k}, i\omega_n) = [i\omega_n\tau_0 - \xi_k\tau_3]^{-1},$

Eliashberg equations

• Eliashberg equations

$$(1 - Z_k) \, i\omega_n = -\frac{1}{\beta} \sum_{k'} i\omega_m Z_{k'} \frac{\left[\sum_{\nu} |g_{k,k',\nu}|^2 D_{\nu} \left(k - k', i\omega_n - i\omega_m\right) + V_C \left(k - k'\right)\right]}{\left(i\omega_m Z_{k'}\right)^2 - \left(\xi_{k'} + \eta_{k'}\right)^2 - \phi_{k'}^2 - \bar{\phi}_{k'}^2}, \tag{1}$$

$$\eta_{k} = -\frac{1}{\beta} \sum_{k'} \left(\xi_{k'} + \eta_{k'} \right) \frac{\left[\sum_{\nu} |g_{k,k',\nu}|^{2} D_{\nu} \left(k - k', i\omega_{n} - i\omega_{m} \right) + V_{C} \left(k - k' \right) \right]}{\left(i\omega_{m} Z_{k'} \right)^{2} - \left(\xi_{k'} + \eta_{k'} \right)^{2} - \phi_{k'}^{2} - \bar{\phi}_{k'}^{2}}, \qquad (2)$$

$$\phi_{k} = \frac{1}{\beta} \sum_{k'} \phi_{k'} \frac{\left[|g_{\boldsymbol{k}, \boldsymbol{k}', \nu}|^{2} D_{\nu} \left(\boldsymbol{k} - \boldsymbol{k'}, i\omega_{n} - i\omega_{m} \right) + V_{C} \left(\boldsymbol{k} - \boldsymbol{k'} \right) \right]}{\left(i\omega_{m} Z_{k'} \right)^{2} - \left(\xi_{\boldsymbol{k}'} + \eta_{k'} \right)^{2} - \phi_{k'}^{2} - \bar{\phi}_{k'}^{2}},$$
(3)

$$\bar{\phi}_{k} = \frac{1}{\beta} \sum_{k'} \bar{\phi}_{k'} \frac{\left[\sum_{\nu} |g_{\boldsymbol{k},\boldsymbol{k}',\nu}|^{2} D_{\nu} \left(\boldsymbol{k} - \boldsymbol{k'}, i\omega_{n} - i\omega_{m}\right) + V_{C} \left(\boldsymbol{k} - \boldsymbol{k'}\right) \right]}{\left(i\omega_{m} Z_{k'}\right)^{2} - \left(\xi_{\boldsymbol{k}'} + \eta_{k'}\right)^{2} - \phi_{k'}^{2} - \bar{\phi}_{k'}^{2}}.$$
(4)

<u>Reductions</u>

-- Assume the chemical potential shift is unimportant, Eq.(2) vanish due to $\sum_{k'} \xi_{k'}(...) \approx N_F \int_{-\omega_D}^{\omega_D} d\xi \xi(...) = 0$

-- Assume the anomalous self energy is real, Eq.(3)(4) reduce into one.

Eliashberg equations

$$i\omega_{n} \left[1 - Z\left(\boldsymbol{k}, i\omega_{n}\right)\right] = -\frac{1}{\beta} \sum_{\boldsymbol{k}', i\omega_{m}} \frac{i\omega_{m} Z\left(\boldsymbol{k}', i\omega_{m}\right) V_{\boldsymbol{k}, \boldsymbol{k}'}\left(i\omega_{n} - i\omega_{m}\right)}{\omega_{m}^{2} Z^{2}\left(\boldsymbol{k}', i\omega_{m}\right) + \xi_{\boldsymbol{k}'}^{2} + \Delta^{2}\left(\boldsymbol{k}', i\omega_{m}\right)},$$

$$Z\left(\boldsymbol{k}, i\omega_{n}\right) \Delta\left(\boldsymbol{k}, i\omega_{n}\right) = -\frac{1}{\beta} \sum_{\boldsymbol{k}', i\omega_{m}} \frac{Z\left(\boldsymbol{k}', i\omega_{m}\right) \Delta\left(\boldsymbol{k}', i\omega_{m}\right) V_{\boldsymbol{k}, \boldsymbol{k}'}\left(i\omega_{n} - i\omega_{m}\right)}{\omega_{m}^{2} Z^{2}\left(\boldsymbol{k}', i\omega_{m}\right) + \xi_{\boldsymbol{k}'}^{2} + \Delta^{2}\left(\boldsymbol{k}', i\omega_{m}\right)} \longrightarrow \text{(SC gap equation)}$$
where $V_{\boldsymbol{k}, \boldsymbol{k}'}\left(i\omega_{n} - i\omega_{m}\right) = \sum_{\nu} |g_{\boldsymbol{k}, \boldsymbol{k}', \nu}|^{2} D_{\nu}\left(\boldsymbol{k} - \boldsymbol{k}', i\omega_{n} - i\omega_{m}\right) + V_{C}\left(\boldsymbol{k} - \boldsymbol{k}'\right)$

Spin-fluctuation mechanism

Many unconventional superconductivity emerging out on the border of AFM. \Rightarrow spin-fluctuation-mediated pairing.

Cooper pair

Spin fluctuations (e.g. paramagnons)

Quasiparticle-spin-fluctuation coupling: $\mathcal{H}_{int} = \frac{1}{\Omega} \sum_{\mathbf{q}} \bar{g}(\mathbf{q}) \mathbf{s}(\mathbf{q}) \cdot \mathbf{S}(-\mathbf{q})$, $(s_q = \frac{1}{2} \sum_{k,\alpha,\beta} c_{k\alpha}^{\dagger} \sigma_{\alpha\beta} c_{k\beta})$ $S_{eff} = \sum_{\mathbf{p},\alpha} \int_{0}^{\beta} d\tau \psi_{\mathbf{p},\alpha}^{\dagger}(\tau) (\partial_{\tau} + \epsilon_{\mathbf{p}} - \mu) \psi_{\mathbf{p},\alpha}(\tau) - \frac{g^2}{6} \sum_{\mathbf{q}} \int_{0}^{\beta} d\tau \int_{0}^{\beta} d\tau' \chi(\mathbf{q}, \tau - \tau') \mathbf{s}(\mathbf{q}, \tau) \cdot \mathbf{s}(-\mathbf{q}, \tau').$

P. Monthoux, A. V. Balatsky, and D. Pines, Phys. Rev. Lett. 67, 3448(1991) P. Monthoux and G. G. Lonzarich, Phys. Rev. B 59, 14598 (1999)

Early history of spin-fluctuation mechanism

• 1959 : magnon-mediate electron-electron pairing predict a spin-triplet pairing.

A. I. Akhiezer, I. Ya. Pomeranchunk, JETP 36, 859 (1959).

• 1965: repulsive interaction can also induce pairing (Kohn-Luttinger mechanism).

W. Kohn, J. Luttinger, PRL 15, 524 (1965).

• 1966: ferromagnetic spin fluctuation induces a repulsive interaction, which suppress the spin-singlet pairing in transition metals (e.g. Pd).

N. Berk, J. Schrieffer, PRL **17**, 433 (1966).

• 1970s : triplet pairing in He-3 mediated from FM spin fluctuations.

....

A. Layzer, D. Fay, Int. J Magn. 1, 135 (1971); P. W. Anderson, W. Brinkman, PRL 30, 1108 (1973). A. J. Leggett, RMP 47, 331 (1975).

 1985-1986: Antiferromagnetic spin-fluctuation-mediated d-wave pairing from Hubbard model, t-J model

J. E. Hirsch, PRL **54**, 1317 (1985); D. Scalapino, E. Loh Jr, J. Hirsch, PRB **34**, 8190 (1986); K. Miyake, S. Schmitt-Rink, C. Varma, PRB **34**, 6554 (1986); M. T. Beal-Monod, C. Bourbonnais, V. J. Emery, PRB 34, 7716 (1986).

 1990s: spin-fluctuation-induced high-T_c SC from weak-coupling theory & various universal factors affect Tc from strong-coupling theory (Eliashberg theory).

P. Monthoux, A. Balatsky, D. Pines, PRL **67**, 3448 (1991); PRB **46**, 12803 (1992). P. Monthoux, D. Pines, PRL **69**, 961 (1992); PRB **47**, 6069 (1993); PRB 49, 4261 (1994).

Spin-fluctuation mechanism: physical picture & anisotropic pairing

- Spin fluctuation mechanism
- effective local field spin $\boldsymbol{s}\left(\boldsymbol{r},t\right)$ $\boldsymbol{H}\left(\boldsymbol{r},t\right)=g\boldsymbol{s}\left(\boldsymbol{r},t\right)$ (linear response) Induced magnetization $\boldsymbol{M}(\boldsymbol{r},t) = g \int d^{3}\boldsymbol{r}' dt' \boldsymbol{s}(\boldsymbol{r}',t') \chi(\boldsymbol{r}-\boldsymbol{r}',t-t'),$ Induced effective field H'(r,t) = gM(r,t)**Effective spin-spin interaction** $V_{eff} = -\int d^{3}\boldsymbol{r} dt \boldsymbol{s} \left(\boldsymbol{r}, t\right) \cdot \boldsymbol{H'}\left(\boldsymbol{r}, t\right)$ $= -g^{2} \int d^{3}\boldsymbol{r} dt d^{3}\boldsymbol{r}' dt' \chi \left(\boldsymbol{r} - \boldsymbol{r}', t - t'\right) \boldsymbol{s} \left(\boldsymbol{r}, t\right) \cdot \boldsymbol{s} \left(\boldsymbol{r}', t'\right).$
- Gap equation analysis

$$\Delta_k = -g_{eff}^2 \sum_{k'} \chi(\mathbf{k-k'}) \frac{\tanh \frac{E_{k'}}{2T}}{E_{k'}} \Delta_{k'}$$

For magnetic fluctuation spectrum, $\chi > 0$, the only nontrivial solution required the sign changes for Δ_k . \Rightarrow **No s-wave solution!**

Spin interaction oscillating in space, produce an effecting attraction for electrons, and form anisotropic pairing of electrons with antiparallel/parallel spins for AFM/FM case.

P. Monthoux, D. Pines, G. G. Lonzarich, nature **450**, 1177(2007).

Spin-fluctuation mechanism: predictions

Effective action

$$S_{\text{eff}} = \sum_{\mathbf{p},\alpha} \int_0^\beta d\tau \psi_{\mathbf{p},\alpha}^\dagger(\tau) (\partial_\tau + \epsilon_{\mathbf{p}} - \mu) \psi_{\mathbf{p},\alpha}(\tau) - \frac{g^2}{6} \sum_{\mathbf{q}} \int_0^\beta d\tau \int_0^\beta d\tau' \chi(\mathbf{q},\tau - \tau') \mathbf{s}(\mathbf{q},\tau) \cdot \mathbf{s}(-\mathbf{q},\tau') \psi_{\mathbf{p},\alpha}(\tau) d\tau' \chi(\mathbf{q},\tau - \tau') \mathbf{s}(\mathbf{q},\tau) \cdot \mathbf{s}(-\mathbf{q},\tau') \psi_{\mathbf{p},\alpha}(\tau) + \frac{g^2}{6} \sum_{\mathbf{q}} \int_0^\beta d\tau' \chi(\mathbf{q},\tau - \tau') \mathbf{s}(\mathbf{q},\tau) \cdot \mathbf{s}(-\mathbf{q},\tau') \psi_{\mathbf{p},\alpha}(\tau) d\tau' \chi(\mathbf{q},\tau - \tau') \mathbf{s}(\mathbf{q},\tau) \cdot \mathbf{s}(-\mathbf{q},\tau') \psi_{\mathbf{p},\alpha}(\tau) + \frac{g^2}{6} \sum_{\mathbf{q}} \int_0^\beta d\tau' \chi(\mathbf{q},\tau - \tau') \mathbf{s}(\mathbf{q},\tau) \cdot \mathbf{s}(-\mathbf{q},\tau') \psi_{\mathbf{q},\alpha}(\tau) + \frac{g^2}{6} \sum_{\mathbf{q}} \int_0^\beta d\tau' \chi(\mathbf{q},\tau - \tau') \mathbf{s}(\mathbf{q},\tau) \cdot \mathbf{s}(-\mathbf{q},\tau') \psi_{\mathbf{q},\alpha}(\tau) + \frac{g^2}{6} \sum_{\mathbf{q}} \int_0^\beta d\tau' \chi(\mathbf{q},\tau - \tau') \mathbf{s}(\mathbf{q},\tau) \cdot \mathbf{s}(-\mathbf{q},\tau') \psi_{\mathbf{q},\alpha}(\tau) + \frac{g^2}{6} \sum_{\mathbf{q}} \int_0^\beta d\tau' \chi(\mathbf{q},\tau - \tau') \mathbf{s}(\mathbf{q},\tau) \cdot \mathbf{s}(-\mathbf{q},\tau') \psi_{\mathbf{q},\alpha}(\tau) + \frac{g^2}{6} \sum_{\mathbf{q}} \int_0^\beta d\tau' \chi(\mathbf{q},\tau - \tau') \mathbf{s}(\mathbf{q},\tau) \cdot \mathbf{s}(-\mathbf{q},\tau') \psi_{\mathbf{q},\alpha}(\tau) + \frac{g^2}{6} \sum_{\mathbf{q}} \int_0^\beta d\tau' \chi(\mathbf{q},\tau - \tau') \mathbf{s}(\mathbf{q},\tau) \cdot \mathbf{s}(-\mathbf{q},\tau') \psi_{\mathbf{q},\alpha}(\tau) + \frac{g^2}{6} \sum_{\mathbf{q}} \int_0^\beta d\tau' \chi(\mathbf{q},\tau - \tau') \mathbf{s}(\mathbf{q},\tau) \cdot \mathbf{s}(-\mathbf{q},\tau') \psi_{\mathbf{q},\alpha}(\tau) + \frac{g^2}{6} \sum_{\mathbf{q}} \int_0^\beta d\tau' \chi(\mathbf{q},\tau - \tau') \mathbf{s}(\mathbf{q},\tau) \cdot \mathbf{s}(-\mathbf{q},\tau') \psi_{\mathbf{q},\alpha}(\tau) + \frac{g^2}{6} \sum_{\mathbf{q}} \int_0^\beta d\tau' \chi(\mathbf{q},\tau - \tau') \mathbf{s}(\mathbf{q},\tau) \cdot \mathbf{s}(-\mathbf{q},\tau') \psi_{\mathbf{q},\alpha}(\tau) + \frac{g^2}{6} \sum_{\mathbf{q}} \int_0^\beta d\tau' \chi(\mathbf{q},\tau) \cdot \mathbf{s}(-\mathbf{q},\tau') \cdot \mathbf{s}(-\mathbf{q},\tau') \psi_{\mathbf{q},\alpha}(\tau) + \frac{g^2}{6} \sum_{\mathbf{q}} \int_0^\beta d\tau' \chi' \psi_{\mathbf{q},\alpha}(\tau) \cdot \mathbf{s}(-\mathbf{q},\tau') \cdot$$

Strong-coupling calculations: **Eliashberg equations**

$$\Sigma(\mathbf{p}, i\omega_n) = g^2 \frac{T}{N} \sum_{\Omega_n} \sum_{\mathbf{k}} \chi(\mathbf{p} - \mathbf{k}, i\omega_n - i\Omega_n) G(\mathbf{k}, i\Omega_n),$$

$$G(\mathbf{p}, i\omega_n) = \frac{1}{i\omega_n - (\epsilon_{\mathbf{p}} - \mu) - \Sigma(\mathbf{p}, i\omega_n)},$$

$$\Lambda(T) \Phi(\mathbf{p}, i\omega_n) = \left[\frac{g^2}{3}\right] \frac{T}{N} \sum_{\Omega_n} \sum_{\mathbf{k}} \chi(\mathbf{p} - \mathbf{k}, i\omega_n - i\Omega_n) |G(\mathbf{k}, i\Omega_n)|^2 \Phi(\mathbf{k}, i\Omega_n)$$

predict the discovery of SC in many HFs, such as, UGe₂, $Ce_nX_mIn_{3n+2m}$, ...

Predictions for the enhancement of T_c

- AFM d-wave is more robust than FM p-wave in quasi-2D case
- Quasi-2D > 3D
- Anisotropic > isotropic
- Good Fermi surface nesting.

P. Mounthoux, G. G. Lonzarich, PRB **59**, 14598 (1999) P. Mounthoux, G. G. Lonzarich, PRB **63**, 054529 (2001) P. Mounthoux, G. G. Lonzarich, PRB **66**, 224504 (2002) S. Nishiyama, K. Miyake, C. M, Varma, PRB **88**, 014510 (2013)

Universal scaling of T_c

Prediction: find a material with large magnetic exchange coupling ⇒ potential for a high T_c.

Y. Li, and Y.-F. Yang, Chin. Sci. Bull. 62, 4068 (2017)

Eliashberg framework

- Interplay effects of Fermi-surface topology and interactions on pairing symmetry for real materials?
- Explore novel pairing states (such as odd-ω pairing, ...)

•

...

- T_c-calculations.
- Effects of the dynamics of quantum critical fluctuations?
- Competition between incoherence and SC?
- Explore enhancement factors & pair-breaking factors for T_c.
- •

A phenomenological framework to HF SC

Y. Li, and Y.-F. Yang, Chin. Sci. Bull. 62, 4068 (2017) 李宇, 盛玉韬, 杨义峰, 物理学报 70, 017402 (2021)

Phenomenological pairing interactions

- Beyond the RPA approach, which could fit the experimental spin fluctuation behaviors.
- The parameters can be extracted from neutron scattering and NMR experiments.
- The phenomenological approach avoided the need for the criterion of Migdal-like theorem.

CeCoIn₅: d-wave pairing & T_c-scaling behavior

$$T_c(p) = 0.14T_m^* exp\left[-\frac{1}{N_F(p,T_c)V_{eff}(p)}\right]$$

What's the microscopic correspondence of this T_c-formula?

- Y. -F. Yang et al, nature 454, 611 (2008)
- Y. -F. Yang and D. Pines, Proc, Natl. Acad. Sci. USA, **109**, E3060 (2012)
 Y. -F. Yang and D. Pines. Proc. Natl. Acad. Sci. USA, **111**, 18178 (2014)
 Y. -F. Yang, Rep. Prog. Phys. **79**, 074501 (2016)

- The pairing symmetry is $d_{x_2-y_2}$ -wave, as expected.
- The T_c can be captured by a simple formula similar to two-fluid model.
- Both T_{sf} and T^* come from the nearest-neighbor magneticexchange coupling J_{ex} . which provide a microscopic support for two-fluid model.

CeCu, Si,: nodeless SC from experiments

(1) STM: two-gap behaviors	M. Enayat, <i>et al</i> , Phys. Rev. B 93 , 045123 (2016)
(2) Angle-resolved specific heat: no nodes	S. Kittaka, <i>et al</i> , Phys. Rev. B 94 , 054514 (2016)

G.-M. Pang et al, Proc. Natl. Acad. Sci. 115, 5343 (2018)

T. Yamashita et al, Sci. Adv. 3, e1601667 (2017)

S. Kitagawa, et al, Phys. Rev. B 96, 134506 (2017)

Experimental fittings: s[±] ? s⁺⁺? 'd+d'?

Fully gapped

(3) Penetration depth

(4) Thermal conductivity

(5) NMR: no coherence peak

CeCu,Si,: nodeless s[±]-wave pairing from calculations

Y. Li et al, Phys. Rev. Lett. 120, 217001 (2018)

YbRh₂Si₂: nearly degenerate p_x+ip_y and d_{x2-y2}-wave

Y. Li et al, Phys. Rev. B 100, 085132 (2019)

TBG (s^{\pm}) & **Sr**₂**RuO**₄ $(d_{x2-y2}+ig)$

Z. Liu, Y. Li, Y.-f. Yang, Chin. Rev. B 28, 077103 (2019)

PHYSICAL REVIEW B 106, 054516 (2022)

Multipole-fluctuation pairing mechanism of $d_{x^2-y^2} + ig$ superconductivity in Sr₂RuO₄

Yutao Sheng,^{1,2} Yu Li,³ and Yi-feng Yang^(1,2,4,*) ¹Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China ²School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China ³Kavli Institute for Theoretical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China ⁴Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China

(Received 18 December 2021; revised 2 July 2022; accepted 16 August 2022; published 23 August 2022)

Y. Sheng, Y. Li, Y.-f. Yang, Phys. Rev. B 106, 054516 (2022)

III. Non-Fermi-liquid SC

- Non-Fermi liquid phenomenology
- Advance in pairing from NFLs

Non-Fermi liquids

0

6.9

8.2

Non-Fermi liquid (NFL)

- Anomalous metallic transport & thermodynamic properties deviating from the Landau's Fermi liquid theory.
- Beyond Landau's quasiparticle description. ٠

Physical quantities	FL	NFL
Resistivity $\rho(T)$	T^2	<i>T</i> ^α (α≠2)
Specific heat $C(T)$	Т	e.g., T logT
QP damping rate $\text{Im}\Sigma(\omega)$	ω^2	ω ^α (α<2)

In NFL, the coherent quasiparticle peak is broadened into incoherent states.

Non-Fermi liquids

Experiments

	$ ho \propto \mathbf{T} \mathbf{as}$ $\mathbf{T} ightarrow \infty$	$ ho \simeq {f T}$ as ${f T} ightarrow {f 0}$	Extended criticality	cot $\Theta_{H} \propto \mathit{T}^2$ (at low <i>H</i>)	Modified Kohler's (at low H)	H-linear MR (at high H)	Quadrature MR
UD <i>p</i> -cuprates	√ (6)	× (20)	× (21)	√ (22)	√ (23)	_	_
OP p-cuprates	√ (4)	—	—	√ (24)	√ (25)	√ (26)	× (27)
OD p-cuprates	√ (6)	√ (8)	√ (8)	√ (28)	× (29)	√ (29)	√ (29)
La _{2-x} Ce _x CuO ₄	× (30)	√ (<i>31</i> , <i>32</i>)	√ (<i>31</i> , <i>32</i>)	× (33)	× (34)	√ (35)	× (35)
Sr ₂ RuO ₄	√ (36)	× (37)	× (38)	× (39)	× (37)	× (37)	× (37)
Sr ₃ Ru ₂ O ₇	√ (<u>10</u>)	√ (10)	× (10)	×	—	—	–
FeSe _{1-x} S _x	× (40)	√ (41)	× (41)	√ (42)	√ (42)	√* (43)	√* (43)
$BaFe_2(As_{1-x}P_x)_2$	× (44)	√ (45)	× (45)	—	√ (46)	√ (47)	√ (47)
Ba(Fe _{1/3} Co _{1/3} Ni _{1/3}) ₂ As ₂	—	√ (48)	× (48)	—	—	√ (48)	√ (48)
YbRh ₂ Si ₂	× (49)	√ (50)	√ (<u>51</u>)	√ (52)	—	—	—
YbBAI ₄	× (53)	√** (<mark>53</mark>)	√** (53)	—	—	—	—
CeColn ₅	× (54)	√ (55, 56)	× (55, 56)	√ (54)	√ (54)	—	—
CeRh ₆ Ge ₄	× (57)	√ (57)	× (57)	_	—	—	—
(TMTSF) ₂ PF ₆	—	√ (58)	√ (58)	—	—	—	—
MATBG	√ (59)	√ (60)	√ (60)	√ (<u>61</u>)	—	—	_

Theories

	$\rho \propto \textbf{T}$ as $\textbf{T} \rightarrow \textbf{0}$	$ ho \simeq \textbf{\textit{T}}$ as $\textbf{\textit{T}} ightarrow \infty$	$\sigma \propto \omega^{-2/3}$	Quadrature MR	Extended criticality	Experimental prediction
-			Phenomenolog	gical		
MFL	√ (67)	× (67)	×	×	x	Loop currents (107)
EFL	- *	—	-	×	x	Loop currents (108)
			Numerical	·		
ECFL	×	(109)	_	-	×	x
HM (QMC/ED/CA)	- (110)	√ (110–114)	×	-	_	_
DMFT/EDMFT	√ (115)	√ (116, 117)	×	-	√ (117)	_
QCP	(118)	—	-	-	×	-
			Gravity-base	ed		
SYK	√ (119, 120)	√ ^{**} (120)	×	√*** (121)	-	×
AdS/CFT	√ (122)	√ (122)	√**** (90, 126)	×	x	×
AD/EMD	√ (127–129)	√ (90, 126, 127, 129, 130)	√ (90, 126, 130)	×	√ (<u>126</u>)	Fractional A-B (129)

P. W. Phillips, N. E. Hussey, P. Abbamonte, Science 377, 169 (2022)

J. Yuan, ..., K. Jin, Nature 602, 431 (2022)

NFL acts as a base state for the Cooper pairing \Rightarrow NFL superconductivity

Quantum critical metals (NFL): Monte Carlo simulations

SDW model

PHYSICAL REVIEW X 6, 031028 (2016)

Ising Nematic Quantum Critical Point in a Metal: A Monte Carlo Study

Yoni Schattner, 1 Samuel Lederer, 3 Steven A. Kivelson, 2 and Erez Berg^{1}

Superconductivity and non-Fermi liquid behavior near a nematic quantum critical point

Samuel Lederer^{a,1}, Yoni Schattner^{b,1}, Erez Berg^{b,c}, and Steven A. Kivelson^{d,2}

$$H_{nem} = -h \sum_{\langle \mathbf{r}, \mathbf{r}' \rangle} \mu^{x}_{\mathbf{r}, \mathbf{r}'} + V \sum_{\{\mathbf{r}, \mathbf{r}'\}, \{\mathbf{r}', \mathbf{r}''\}} \mu^{z}_{\mathbf{r}, \mathbf{r}'} \mu^{z}_{\mathbf{r}', \mathbf{r}''}$$
$$H_{int} = \alpha t \sum_{\langle \mathbf{r}, \mathbf{r}' \rangle, \sigma} \mu^{z}_{\mathbf{r}, \mathbf{r}'} \left(c^{\dagger}_{\mathbf{r}\sigma} c_{\mathbf{r}'\sigma} + h.c. \right).$$

Fermionic spectral weight

- weak coupling: renormalized FL behavior;
- strong coupling: NFL scaling above T_c.
- + Im Σ is nearly independent on ω and T.

Transport

• T-linear resistivity near the QCP.

Y. Schattner *et al*, Phys. Rev. Lett. **117**, 097002 (2016). M. H. Gerlach *et al*, Phys. Rev. B **95**, 035124 (2017).

Y. Schattner *et al*, Phys. Rev. X **6**, 031028 (2016).

S. Lederer et al, Proc. Natl. Acad. Sci. USA. 114, 4905 (2017).

Annual Review of Condensed Matter Physics Monte Carlo Studies of Quantum Critical Metals

Erez Berg¹, Samuel Lederer², Yoni Schattner^{3,4}, and Simon Trebst⁵

E. Berg *et al.*, Ann. Rev. Condens. Matter **10**,63 (2019).

 $\tilde{\rho}$

Nematic model

$$\tilde{D}^{-1} = A[T+b|\mathbf{q}|^2 + c(h-h_c)$$

Rise and fall of hot spots in SC mediated from AFM QCP

Hamiltonian: two-band model

$$\mathcal{H}_{0} = \sum_{\mathbf{k}\alpha} \varepsilon_{c,\mathbf{k}} c_{\mathbf{k}\alpha}^{\dagger} c_{\mathbf{k}\alpha} + \sum_{\mathbf{k},\alpha} \varepsilon_{d,\mathbf{k}} d_{\mathbf{k}\alpha}^{\dagger} d_{\mathbf{k}\alpha}$$
with
$$\varepsilon_{c,\mathbf{k}} = \mu - 2(t+\delta) \cos k_{x} - 2(t-\delta) \cos k_{y},$$

 $\varepsilon_{d,\mathbf{k}+\mathbf{Q}} = -\mu + 2(t-\delta)\cos k_x + 2(t+\delta)\cos k_y,$

(Sign-problem free for DQMC calculation.)

Spin-fermion model

$$S_{\text{int}} = \lambda \sum_{j} \int_{\tau} \mathbf{M}_{j} e^{i\mathbf{Q}\cdot\mathbf{x}_{j}} \cdot (c_{j,\alpha}^{\dagger}\boldsymbol{\sigma}_{\alpha\beta}d_{j,\beta} + \text{H.c.}).$$
$$S_{\text{mag}} = \frac{1}{2} \int_{\mathbf{x},\tau} \left[\frac{1}{v_{s}^{2}} (\partial_{\tau}\mathbf{M})^{2} + (\nabla\mathbf{M})^{2} + rM^{2} + \frac{u}{2}M^{4} \right].$$

Susceptibility (one-loop approximation)

$$\chi^{-1}(\mathbf{q}, i\Omega_n) = \tilde{r} + \mathbf{q}^2 a^2 + \frac{|\Omega_n|}{\gamma},$$
$$\gamma = \frac{\pi v_F^2 \sin \theta_{\text{hs}}}{\lambda^2 N}.$$

X. Wang, Y. Schattner, E. Berg, and R. Fernandes, PRB 95, 174520 (2017)

Eliashberg equations

$$(1 - Z_{1,k})i\omega_n = -\frac{n_b\lambda^2}{\beta V} \sum_{\omega_m, \mathbf{p}} \chi(\mathbf{k} - \mathbf{p}, i\omega_n - i\omega_m) \left(\frac{Z_{2,p}i\omega_m}{Z_{2,p}^2\omega_m^2 + \varepsilon_{2,p}^2}\right)$$

$$\phi_{1,k} = -\frac{n_b\lambda^2}{\beta V} \sum_{\omega_m, \mathbf{p}} \chi(\mathbf{k} - \mathbf{p}, i\omega_n - i\omega_m) \left(\frac{\phi_{2,p}}{Z_{2,p}^2\omega_m^2 + \varepsilon_{2,p}^2}\right)$$
hot spots

$$(1 - Z_{1,k})i\omega_n = -\frac{n_b\lambda^2}{\beta V} \sum_{\omega_m, \mathbf{p}} \chi(\mathbf{k} - \mathbf{p}, i\omega_n - i\omega_m) \left(\frac{\phi_{2,p}}{Z_{2,p}^2\omega_m^2 + \varepsilon_{2,p}^2}\right)$$

$$(1 - Z_{1,k})i\omega_n = -\frac{n_b\lambda^2}{\beta V} \sum_{\omega_m, \mathbf{p}} \chi(\mathbf{k} - \mathbf{p}, i\omega_n - i\omega_m) \left(\frac{\phi_{2,p}}{Z_{2,p}^2\omega_m^2 + \varepsilon_{2,p}^2}\right)$$

$$(1 - Z_{1,k})i\omega_n = -\frac{n_b\lambda^2}{\beta V} \sum_{\omega_m, \mathbf{p}} \chi(\mathbf{k} - \mathbf{p}, i\omega_n - i\omega_m) \left(\frac{\phi_{2,p}}{Z_{2,p}^2\omega_m^2 + \varepsilon_{2,p}^2}\right)$$

$$(1 - Z_{1,k})i\omega_n = -\frac{n_b\lambda^2}{\beta V} \sum_{\omega_m, \mathbf{p}} \chi(\mathbf{k} - \mathbf{p}, i\omega_n - i\omega_m) \left(\frac{\phi_{2,p}}{Z_{2,p}^2\omega_m^2 + \varepsilon_{2,p}^2}\right)$$

$$(1 - Z_{1,k})i\omega_n = -\frac{n_b\lambda^2}{\beta V} \sum_{\omega_m, \mathbf{p}} \chi(\mathbf{k} - \mathbf{p}, i\omega_n - i\omega_m) \left(\frac{\phi_{2,p}}{Z_{2,p}^2\omega_m^2 + \varepsilon_{2,p}^2}\right)$$

$$(1 - Z_{1,k})i\omega_n = -\frac{n_b\lambda^2}{\beta V} \sum_{\omega_m, \mathbf{p}} \chi(\mathbf{k} - \mathbf{p}, i\omega_n - i\omega_m) \left(\frac{\phi_{2,p}}{Z_{2,p}^2\omega_m^2 + \varepsilon_{2,p}^2}\right)$$

$$(1 - Z_{1,k})i\omega_n = -\frac{n_b\lambda^2}{\beta V} \sum_{\omega_m, \mathbf{p}} \chi(\mathbf{k} - \mathbf{p}, i\omega_n - i\omega_m) \left(\frac{\phi_{2,p}}{Z_{2,p}^2\omega_m^2 + \varepsilon_{2,p}^2}\right)$$

$$(1 - Z_{1,k})i\omega_n = -\frac{n_b\lambda^2}{\beta V} \sum_{\omega_m, \mathbf{p}} \chi(\mathbf{k} - \mathbf{p}, i\omega_m - i\omega_m) \left(\frac{\phi_{2,p}}{Z_{2,p}^2\omega_m^2 + \varepsilon_{2,p}^2}\right)$$

$$(1 - Q_{1,k})i\omega_n = -\frac{n_b\lambda^2}{\beta V} \sum_{\omega_m, \mathbf{p}} \chi(\mathbf{k} - \mathbf{p}, i\omega_m - i\omega_m) \left(\frac{\phi_{2,p}}{Z_{2,p}^2\omega_m^2 + \varepsilon_{2,p}^2}\right)$$

$$(1 - Q_{1,k})i\omega_n = -\frac{n_b\lambda^2}{\beta V} \sum_{\omega_m, \mathbf{p}} \chi(\mathbf{k} - \mathbf{p}, i\omega_m - i\omega_m) \left(\frac{\phi_{2,p}}{Z_{2,p}^2\omega_m^2 + \varepsilon_{2,p}^2}\right)$$

$$(1 - Q_{1,k})i\omega_n = -\frac{n_b\lambda^2}{\beta V} \sum_{\omega_m, \mathbf{p}} \chi(\mathbf{k} - \mathbf{p}, i\omega_m - i\omega_m) \left(\frac{\phi_{2,p}}{\omega_m^2 + \varepsilon_{2,p}^2}\right)$$

$$(1 - Q_{1,k})i\omega_m = -\frac{n_b\lambda^2}{\beta V} \sum_{\omega_m, \mathbf{p}} \chi(\mathbf{k} - \mathbf{p}, i\omega_m - i\omega_m) \left(\frac{\phi_{2,p}}{\omega_m^2 + \varepsilon_{2,p}^2}\right)$$

$$(1 - Q_{1,k})i\omega_m = -\frac{n_b\lambda}{\omega_m^2 + \varepsilon_{2,p}^2} \sum_{\omega_m, \mathbf{p}} \chi(\mathbf{k} - \mathbf{p}, i\omega_m - i\omega_m) \left(\frac{\phi_{2,p}}{\omega_m^2 + \varepsilon_{2,p}^2}\right)$$

$$(1 - Q_{1,k})i\omega_m = -\frac{n_b\lambda^2}{\omega_m^2 + \varepsilon_{2,p}^2} \sum_{\omega_m, \mathbf{p}} \chi(\mathbf{k} - \mathbf{p}, i\omega_m - i\omega_m^2}\right)$$

$$(1 - Q_{1,k})i\omega_m = -\frac{n_b\lambda}{\omega_m^2 + \varepsilon_{2,p}^2} \sum_{\omega_m, \mathbf{p}} \chi(\mathbf{k} - \mathbf{p}, i\omega_m^2 + \varepsilon_{$$

γ-model (A. Chubukov, et al.)

Eliashberg equations

$$\left(\begin{array}{c} Z\left(\omega_{n}\right)=1+\frac{\pi T}{\omega_{n}}\sum_{\omega_{m}}\lambda\left(\omega_{m}-\omega_{n}\right)\frac{\omega_{m}}{\sqrt{\omega_{m}^{2}+\Delta^{2}\left(\omega_{m}\right)}}, \\ Z\left(\omega_{n}\right)\Delta\left(\omega_{n}\right)=\pi T\sum_{\omega_{m}}\lambda\left(\omega_{m}-\omega_{n}\right)\frac{\Delta\left(\omega_{m}\right)}{\sqrt{\omega_{m}^{2}+\Delta^{2}\left(\omega_{m}\right)}}. \end{array} \right.$$

$$\lambda\left(\Omega\right) = \left(\frac{\Omega_0}{|\Omega|}\right)$$

- The same interaction responsible for NFL and SC pairing simultaneously.
- Singular fermionic self-energy (NFL) kills the Cooper logarithm.
- Pairing gaps out low-energy states and restores a FL.

Near QCP
$$(\xi^{-2} \rightarrow 0)$$
,
 $\Sigma(\omega) = \omega^{1-\gamma} (\omega_0)^{\gamma}$
T
Quantum Critical
Non-FL
Fermi Liquid
doping

QCP

$\gamma = 1/2$	2D antiferromagnetic QCP						
$\gamma = 1/3$	1/3 2D ferromagnetic QCP/interaction with gauge field/nematic						
$\gamma = 1/4$	2D 2k _F QCP						
$\gamma = 2$	QCP of Einstein phonons						
$\gamma = 1$	2D QCP of fermions interacting with undamped bosons						
$\gamma = +0$ (log	(ω) 3D QCP, Color superconductivity						
$\gamma = 0(\varepsilon)$	QCP in 3-ε dimension						

(from A. Chubukov's talk)

Special role of the first Matsubara frequency

PRL 117, 157001 (2016)PHYSICAL REVIEW LETTERSweek ending
7 OCTOBER 2016Superconductivity near a Quantum-Critical Point: The Special Role of the First
Matsubara FrequencyYuxuan Wang,¹ Artem Abanov,² Boris L. Altshuler,³ Emil A. Yuzbashyan,⁴ and Andrey V. Chubukov⁵Eliashberg
equations $\Sigma(\omega_n) = \pi T \sum_{\omega_m} \lambda(\omega_m - \omega_n) \frac{\omega_m + \Sigma(\omega_m)}{\sqrt{[\omega_m + \Sigma(\omega_m)]^2 + \Phi^2(\omega_m)}},$
 $\Phi(\omega_n) = \pi T \sum_{\omega_m} \lambda(\omega_m - \omega_n) \frac{\Phi(\omega_m)}{\sqrt{[\omega_m + \Sigma(\omega_m)]^2 + \Phi^2(\omega_m)}},$
where $\lambda(\Omega) = \left(\frac{\Omega_0}{|\Omega|}\right)^{\gamma}$,

• Recast the gap equation,

$$\Delta(\omega_n) = \pi T \sum_{\omega_m} \frac{\lambda(\omega_m - \omega_n)}{\sqrt{\omega_m^2 + \Delta^2(\omega_m)}} \left(\Delta(\omega_m) - \Delta(\omega_n) \frac{\omega_m}{\omega_n} \right).$$

• Self-energy at first Matsubara frequency

$$\Sigma(\pi T) = [g/(2\pi T)]^{\gamma} \pi T \sum_{m' \neq 0} \text{sgn}(2m'+1)/|m'|^{\gamma},$$

$$T_c \sim \omega_0 (\gamma N)^{-1/\gamma} \sim \frac{g}{2\pi N^{1/\gamma}} e^{\log(b/\gamma)/\gamma} \gg \frac{g}{2\pi N^{1/\gamma}}$$

Y. Wang et al, Phys. Rev. Lett. 117, 157001 (2016)

- In ω_n=ω_m: there is an exact cancellation of the singular critical fluctuations in gap equation. ⇒
 QCP will not destroy SC.
- $\Sigma(\pm \pi T)=0$ suggest it is irrelevant to pairing.
- A non-zero T_c can always be obtained due to $\Sigma(\pm \pi T)=0 \Rightarrow$ SC always wins out NFL.

SC can always emerging out near a QCP, no matter what the interplay between pairing interaction and fermionic incoherence.

Interplay of SC and NFL near QCP (A. Chubukov, et al.)

T/\overline{g} Phase diagram for γ -model

SU

Y

A. Abanov et al, PRB **102**, 024524 (2020). Y.-M. Wu. et al, PRB **102**, 024525 (2020). V. Chubukov. et al, Ann. Phys. **417**, 168142 (2020) Y.-M. Wu. et al, PRB **103**, 024522 (2021) Y.-M. Wu. et al, PRB **103**, 184508 (2021) S.-S. Zhang. et al, PRB **104**, 144509 (2021)

- T_c<T<T_p: incoherence of fermions induce a gap-filling behavior; T<T_c: fermions acquire coherence and develop a SC gap.
- Gap fluctuations due to the sign-changing $\Delta(i\omega_n)$

٠

.

SC from incoherent metals (SYK model)

- Spinful SYK, SYK+Hubbard, Yukawa-SYK, ...
- Coherent SC from incoherent metals with large Δ/T_c ratio (D. Chowdhury, E. Berg, 2020)
- 1st-order SC transition (M.
 Franz, 2021; S. Sachdev, 2022)
- Odd-ω SC (N.V. Gnezdilov, 2019)
- Kosterlitz-Thouless quantumcritical behavior (Y. Wang, 2020);
- Holographic SC (J. Schmalian, 2019, 2020, 2022)

.

Summary: Effectiveness & Failure of Eliashberg theories

- Combining with a phenomenological pairing interaction, Eliashberg theory provide a simple way to tackle with real materials and compare with experiments.
- The effectiveness of the Eliashberg theory is preserved when the perturbation theory become exact, which relate to the Migdal's theorem in el-ph systems, and the assumptions $v_{boson} \ll v_{fermion}$ in spin-fermion model, and the large-N expansion in SYK models.
- The intertwining of SC and NFL or other orders, made the validity of Eliashberg calculations become a more subtle issue.
- Comparisons with DQMC simulations show a threshold for the validity of Migdal-Eliashberg theory, due to the phonon softening at strong coupling.

PHYSICAL REVIEW B 97, 140501(R) (2018)

Rapid Communications

Breakdown of the Migdal-Eliashberg theory: A determinant quantum Monte Carlo study

I. Esterlis,¹ B. Nosarzewski,^{1,2} E. W. Huang,^{1,2} B. Moritz,² T. P. Devereaux,^{2,3} D. J. Scalapino,⁴ and S. A. Kivelson^{1,3} ¹Department of Physics, Stanford University, Stanford, California 94305, USA ²Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory and Stanford University, Menlo Park, California 94025, USA ³Geballe Laboratory for Advanced Materials, Stanford University, Stanford, California 94305, USA ⁴Department of Physics, University of California, Santa Barbara, California 93106-9530, USA

(Received 7 November 2017; revised manuscript received 19 February 2018; published 2 April 2018)

Annals of Physics 417 (2020) 168190

Eliashberg theory of phonon-mediated superconductivity — When it is valid and how it breaks down^{*}

Andrey V. Chubukov^{a,*}, Artem Abanov^b, Ilya Esterlis^c, Steven A. Kivelson^d
^a School of Physics and Astronomy and William I. Fine Theoretical Physics Institute, University of Minnesota, Minneapolis, MN 55455, USA
^b Department of Physics, Texas A&M University, College Station, USA
^c Department of Physics, Itarvard University, USA

Thanks for your attention !