

Two-stage superconductivity in Hatsugai-Kohmoto-BCS model

Yu Li (李宇) UCAS, KITS 2022-12-23

Ref: Y. Li, V. Mishra, Y. Zhou, and F. -C. Zhang, New J. Phys. 24, 103019 (2022).

Outline

- Introduction to HK model
- Revisit the Cooper instability
- Two-stage superconductivity
- Ginzburg-Landau analysis
- Summary & Outlook

Where do we approaching to the unconventional SC?

[Motivation]: What about a doped Mott insulator with simultaneously beyond Landau's Fermi-liquid theory (NFL) have the SC instability?

Non-Fermi liquids (previous talk)

Experiments

	$ ho \propto \mathbf{T} \mathbf{as}$ $\mathbf{T} ightarrow \infty$	$ ho \simeq {m au}$ as ${m au} ightarrow {m au}$ o	Extended criticality	cot $\Theta_{H} \simeq \mathit{T}^{2}$ (at low <i>H</i>)	Modified Kohler's (at low H)	H-linear MR (at high H)	Quadrature MR
UD p-cuprates	√ (6)	× (20)	× (21)	√ (22)	√ (23)	_	_
OP p-cuprates	√ (4)	—	—	√ (24)	√ (25)	√ (26)	× (27)
OD p-cuprates	√ (6)	√ (8)	√ (8)	√ (28)	× (29)	√ (29)	√ (29)
La _{2-x} Ce _x CuO ₄	× (30)	√ (31, 32)	√ (<u>31</u> , <u>32</u>)	× (33)	× (34)	√ (35)	× (35)
Sr ₂ RuO ₄	√ (36)	× (37)	× (38)	× (39)	× (37)	× (37)	× (37)
Sr ₃ Ru ₂ O ₇	√ (<u>10</u>)	√ (<u>10</u>)	× (10)	×	—	_	—
FeSe _{1-x} S _x	× (40)	√ (41)	× (41)	√ (42)	√ (42)	√* (43)	√* (43)
$BaFe_2(As_{1-x}P_x)_2$	× (44)	√ (45)	× (45)	—	√ (46)	√ (47)	√ (47)
Ba(Fe _{1/3} Co _{1/3} Ni _{1/3}) ₂ As ₂	—	√ (48)	× (48)	—	—	√ (48)	√ (48)
YbRh ₂ Si ₂	× (49)	√ (50)	√ (<u>51</u>)	√ (52)	—	—	—
YbBAI ₄	× (53)	√** (<mark>53</mark>)	√** (<mark>53</mark>)	—	—	—	—
CeColn ₅	× (54)	√ (55, 56)	× (55, 56)	√ (54)	√ (54)	—	—
CeRh ₆ Ge ₄	× (57)	√ (57)	× (57)	—	—	—	—
(TMTSF) ₂ PF ₆	—	√ (58)	√ (<mark>58</mark>)	—	—	—	—
MATBG	√ (59)	√ (60)	√ (60)	√ (<u>61</u>)	_	—	_

Theories

	$\rho \propto \textbf{T}$ as $\textbf{T} \rightarrow \textbf{0}$	$ ho \simeq \textbf{\textit{T}}$ as $\textbf{\textit{T}} ightarrow \infty$	$\sigma \propto \omega^{-2/3}$	Quadrature MR	Extended criticality	Experimental prediction					
Phenomenological											
MFL	√ (67)	× (67)	×	×	x	Loop currents (107)					
EFL	- *	—	-	×	x	Loop currents (108)					
Numerical											
ECFL	×	(109)	_	-	×	x					
HM (QMC/ED/CA)	- (110)	√ (110–114)	×	-	-	-					
DMFT/EDMFT	√ (115)	√ (116, 117)	×	-	√ (117)	_					
QCP	(118)	—	_	-	×	-					
Gravity-based											
SYK	√ (119, 120)	√ ^{**} (120)	×	√*** (121)	-	×					
AdS/CFT	√ (122)	√ (122)	√**** (90, 126)	×	x	×					
AD/EMD	√ (127–129)	√ (90, 126, 127, 129, 130)	√ (90, 126, 130)	×	√ (<u>126</u>)	Fractional A-B (129)					

P. W. Phillips, N. E. Hussey, P. Abbamonte, Science 377, 169 (2022)

J. Yuan, ..., K. Jin, Nature **602**, 431 (2022)

NFL acts as a base state for the Cooper pairing \Rightarrow NFL superconductivity

Scenarios of pairing from NFL (previous talk)

Coupling of fermions and critical bosons

- Spin-fermion model, hot-spots, patch theory, large-N expansion, ε-expansion, Bosonic quantum criticality,
- Rise and fall of hot spots (E. Berg, R. M. Fernandes, 2017)
- Competition of SC & NFL (M. A. Metlitski, 2015;)
- Quantum fluctuations v.s. thermal fluctuations (H. Wang, G. Torroba, 2017)

Quantum-critical pairing with anomalous retardations

• γ-model (A. V. Chubukov, A. Abanov, Y. Wang)

 $V(\Omega_m) = (\bar{g}/|\Omega_m|)^{\gamma}$

- Special role of 1st-Matsubara frequency
- Gap fluctuations due to the sign-changing $\Delta(i\omega_n)$
- Pseudogap behavior

Fermions with random interactions

- Spinful SYK, SYK+Hubbard, Yukawa-SYK, ...
- Coherent SC from incoherent metals with large Δ/T_c ratio (D. Chowdhury, E. Berg, 2020)
- 1st-order SC transition (M. Franz, 2021; S. Sachdev, 2022)
- Odd-ω SC (N.V. Gnezdilov, 2019)
- Kosterlitz-Thouless quantumcritical behavior (Y. Wang, 2020);

.

• Holographic SC (J. Schmalian, 2019, 2020, 2022)

....

Motivation: Non-Fermi liquid superconductivity

Phenomenological theory of the pseudogap state

Two-leg Hubbard ladders

(doped spin liquid) [R. M. Konik et al., 2000, 2001, 2006]

Renormalized t-J model (doped valence bond insulator)

$$H_{eff} = g_t T + g_s J \sum_{\langle i,j \rangle} \mathbf{S}_i \cdot \mathbf{S}_j \qquad g_t = \frac{2x}{1+x}, \quad g_s = \frac{4}{(1+x)^2}$$

- RVB ansatz $\chi_{i,j} = \langle c_{i,\sigma}^{\dagger} c_{j,\sigma} \rangle \quad \Delta_{i,j} = \langle c_{i,\sigma} c_{j,\sigma} \rangle$
- A phenomenological Green's function

 $G^{RVB}(\boldsymbol{k},\omega) = \frac{g_t}{\omega - \xi(\boldsymbol{k}) - \Delta_R^2 / [\omega + \xi_0(\boldsymbol{k})]} + G_{inc}, \quad \Sigma_R(\boldsymbol{k},\omega) = |\Delta_R(\boldsymbol{k})|^2 / [\omega + \xi_0(\boldsymbol{k})] \quad (\mathsf{RVB self-energy})$

• Green's function for hole-doped d-wave SC

$$G_{coh}^{S}(\boldsymbol{k},\omega) = \frac{g_{t}}{\omega - \xi(\boldsymbol{k}) - \Sigma_{R}(\boldsymbol{k},\omega) - |\Delta_{S}(\boldsymbol{k})|^{2}/[\omega + \xi(\boldsymbol{k}) + \Sigma_{R}(\boldsymbol{k},-\omega)]},$$

K.-Y. Yang, T. M. Rice, F.-C. Zhang, PRB 73, 174501 (2006).

- The ansatz shows good agreement with ARPES data.
- The transition in the normal state from the doped RVB (underdoped) to a standard Landau Fermi liquid (overdoped) is characterized by the change of the form of Green's function: at the QCP, RVB state gapped the spectrum, leading a Luttinger surface coinciding with the Umklapp surface.
- In the d-wave SC state, another Luttinger surface emerging in the nodal direction, which is converted from the normal-state FS.

Revisit: Hatsugai-Kohmoto model (1992)

Exact solution: equation of motion

- Define the retarded Green's function $G_{\sigma}(\mathbf{k},\tau) = -\Theta(\tau) \left\langle \hat{T} \left\{ c_{\mathbf{k}\sigma}(\tau), c_{\mathbf{k}\sigma}^{\dagger}(0) \right\} \right\rangle$
- Using the equation-of-motion method on G, $\partial_{\tau}G_{\sigma}(\mathbf{k},\tau) = -\delta(\tau) \xi_{\mathbf{k}}G_{\sigma}(\mathbf{k},\tau) UQ_{\sigma}(\mathbf{k},\tau)$, where, $Q_{\sigma}(\mathbf{k},\tau) \equiv -\Theta(\tau) \left\langle \hat{T} \left\{ n_{\mathbf{k}\bar{\sigma}}(\tau) c_{\mathbf{k}\sigma}(\tau), c_{\mathbf{k}\sigma}^{\dagger}(0) \right\} \right\rangle$.
- Similar for Q, we have $\partial_{\tau}Q_{\sigma}(\mathbf{k},\tau) = -\delta(\tau)\langle n_{\mathbf{k}\bar{\sigma}}\rangle (\xi_{\mathbf{k}}+U)Q_{\sigma}(\mathbf{k},\tau).$

• Then, the Green's function has the expression

$$G_{\sigma}\left(\mathbf{k}, i\omega_{n}\right) = \frac{1 - \langle n_{\mathbf{k}\bar{\sigma}} \rangle}{i\omega_{n} - \xi_{\mathbf{k}}} + \frac{\langle n_{\mathbf{k}\bar{\sigma}} \rangle}{i\omega_{n} - \xi_{\mathbf{k}} - U}.$$

• Spectral function

$$A_{\sigma}(\mathbf{k},\omega) = -\frac{1}{\pi} \operatorname{Im} G_{\sigma}(\mathbf{k},\omega) = (1 - \langle n_{\mathbf{k}\bar{\sigma}} \rangle) \,\delta\left(\omega - \xi_{\mathbf{k}}\right) + \langle n_{\mathbf{k}\bar{\sigma}} \rangle \,\delta\left(\omega - \xi_{\mathbf{k}} - U\right)$$

Holon
$$S^{\dagger}_{\mathbf{k}\sigma} \equiv (1 - n_{\mathbf{k}\bar{\sigma}}) c^{\dagger}_{\mathbf{k}\sigma}$$
Doublon $D^{\dagger}_{\mathbf{k}\sigma} \equiv n_{\mathbf{k}\bar{\sigma}} c^{\dagger}_{\mathbf{k}\sigma}$ (empty \Rightarrow singly-occupied)(singly-occupied \Rightarrow doubly-occupied)

Related works on the HK model

H.-S. Zhu, et al., PRB 103, 024514 (2012); CPB **30**, 107401 (2021)

Recall: Cooper instability (Cooper, 1956)

• Hamiltonian
$$H = \sum_{k,\sigma} \xi_k c^{\dagger}_{k\sigma} c_{k\sigma} - V \sum_{k,k'} c^{\dagger}_{k\uparrow} c^{\dagger}_{-k\downarrow} c_{-k'\downarrow} c_{k'\uparrow},$$

- Construct a wavefunction with creating a pair electrons from $|G\rangle$, $|\phi\rangle = \sum u_k c^{\dagger}_{k\uparrow} c^{\dagger}_{-k\downarrow} |G\rangle$
- Evaluate the energy change with adding a pair of electrons

$$E = \langle \phi \mid H \mid \phi \rangle - \langle G \mid H \mid G \rangle = \sum_{\mathbf{k} \in \{0 < \xi_{\mathbf{k}} < \omega_D\}} 2\xi_{\mathbf{k}} \left| u_{\mathbf{k}} \right|^2 - V \sum_{\mathbf{k}, \mathbf{k}' \in \{0 < \xi_{\mathbf{k}} < \omega_D\}} u_{\mathbf{k}'}^* u_{\mathbf{k}'} d_{\mathbf{k}'} d_{\mathbf$$

• Introduce a Lagrange multiplier λ via the normalization condition $\sum_{k \in \{0 < \xi_k < \omega_D\}} |u_k|^2 = 1$,

 $E' = E + \lambda \left(\sum_{\mathbf{k} \in \{0 < \xi_{\mathbf{k}} < \omega_D\}} |u_{\mathbf{k}}|^2 - 1 \right), \quad \text{Variational condition} \quad (2\xi_{\mathbf{k}} - \lambda) u_{\mathbf{k}} = V \sum_{\mathbf{k}' \in \{0 < \xi_{\mathbf{k}} < \omega_D\}} u_{\mathbf{k}'},$

• Equation for the Cooper-pair bound state $1 = V \sum_{k \in \{0 < \xi_k < \omega_D\}} \frac{1}{2\xi_k - E} \approx N(0) V \int_0^{\omega_D} d\xi \frac{1}{2\xi - E} = \frac{N_F V}{2} \ln \left| \frac{2\omega_D - E}{-E} \right|$

$$E = -\frac{2\omega_D}{e^{\frac{2}{N(0)V}} - 1} \approx -2\omega_D e^{-\frac{2}{N(0)V}} < 0$$

The electrons near the Fermi surfaces can always favoring Cooper pairing even when the attractive pairing interaction is infinitesimally small.

 $k \in \{0 < \xi_k < \omega_D\}$

Cooper instability in HK model (1)

Cooper instability (1956): The electrons near the Fermi surfaces can always favoring Cooper pairing even when the attractive pairing interaction is infinitesimally small.

• Consider an additional pairing interaction, $H_{\text{pairing}} = -V \sum_{\mathbf{k},\mathbf{k}'} c^{\dagger}_{\mathbf{k}\uparrow} c^{\dagger}_{-\mathbf{k}\downarrow} c_{-\mathbf{k}'\downarrow} c_{\mathbf{k}'\uparrow}$,

• According to Cooper's approach, in HK model, we construct a wavefunction which creating a Cooper pair from |g>,

$$\begin{split} |\psi\rangle &= \sum_{\mathbf{k}\in\Omega_0} \alpha_{\mathbf{k}} b_{\mathbf{k}}^{\dagger} |g\rangle + \sum_{\mathbf{k}\in\Omega_1} \beta_{\mathbf{k}} b_{\mathbf{k}}^{\dagger} |g\rangle , \\ b_{\mathbf{k}}^{\dagger} &= c_{\mathbf{k}\uparrow}^{\dagger} c_{-\mathbf{k}\downarrow}^{\dagger} \end{split}$$

- Normalization condition $\langle \psi | \psi \rangle = \sum_{\mathbf{k} \in \Omega_0} |\alpha_{\mathbf{k}}|^2 + \frac{1}{4} \sum_{\mathbf{k} \in \Omega_1} |\beta_{\mathbf{k}}|^2 = 1.$
- Evaluate the change of energy with adding a Cooper pair,

$$\begin{split} E_{\mathbf{C}} &= \left\langle \psi \right| H \left| \psi \right\rangle - \left\langle g \right| H \left| g \right\rangle \\ &= \sum_{\mathbf{k} \in \Omega_0} 2\xi_{\mathbf{k}} \left| \alpha_{\mathbf{k}} \right|^2 + \frac{1}{4} \sum_{\mathbf{k} \in \Omega_1} \left(\xi_{\mathbf{k}} + U \right) \left| \beta_{\mathbf{k}} \right|^2 - V \sum_{\mathbf{k}, \mathbf{k}' \in \Omega_0} \alpha_{\mathbf{k}}^* \alpha_{\mathbf{k}'} - \frac{V}{16} \sum_{\mathbf{k}, \mathbf{k}' \in \Omega_0} \beta_{\mathbf{k}}^* \beta_{\mathbf{k}'} - \frac{V}{4} \sum_{\mathbf{k} \in \Omega_0, \mathbf{k}' \in \Omega_1} \left(\alpha_{\mathbf{k}}^* \beta_{\mathbf{k}'} + \alpha_{\mathbf{k}} \beta_{\mathbf{k}'}^* \right) \end{split}$$

- Introduce a Lagrange multiplier λ $Q = E_{\rm C} \lambda \left(\langle \psi | \psi \rangle 1 \right),$
- Variational conditions $\frac{\partial Q}{\partial \alpha_{\mathbf{k}}^*} = 0$ and $\frac{\partial Q}{\partial \beta_{\mathbf{k}}^*} = 0$

Cooper instability in HK model (2)

• The variational conditions give the 2 equations

$$\alpha_{\mathbf{k}} = \frac{V}{2\xi_{\mathbf{k}} - E_{\mathbf{C}}} \left(\sum_{\mathbf{k}' \in \Omega_0} \alpha_{\mathbf{k}'} + \frac{1}{4} \sum_{\mathbf{k}' \in \Omega_1} \beta_{\mathbf{k}'} \right),$$
$$\beta_{\mathbf{k}} = \frac{V}{\xi_{\mathbf{k}} + U - E_{\mathbf{C}}} \left(\sum_{\mathbf{k}' \in \Omega_0} \alpha_{\mathbf{k}'} + \frac{1}{4} \sum_{\mathbf{k}' \in \Omega_1} \beta_{\mathbf{k}'} \right).$$

• Summing α_k , β_k over **k** in Ω_o , Ω_1 regions, respectively, one can obtain the equation

$$1 = \sum_{\mathbf{k}\in\Omega_0} \frac{V}{2\xi_{\mathbf{k}} - E_C} + \frac{1}{4} \sum_{\mathbf{k}\in\Omega_1} \frac{V}{\xi_{\mathbf{k}} + U - E_C}.$$

• With taking $\rho(\omega) = \sum_{\mathbf{k}} \delta(\omega - \varepsilon_{\mathbf{k}}) = \frac{1}{W}$ for $-W/2 < \omega < W/2$

$$1 = \frac{V}{4W} \ln \left| \frac{(W - 2\mu - E_{\rm C})^2 (U - E_{\rm C})}{E_{\rm C}^3} \right|.$$

- Distinct from the BCS case, except for the empty region (Ω_0), the emergent singly-occupied region (Ω_1) also contribute to Cooper pairs. [In Phillips's paper, the contribution from Ω_1 is neglected.]
- The Cooper instability is smoothly inherited from the BCS theory as turning on U from U=0.

Two-stage superconductivity in HK-BCS model

- SC transition is of first order as U≠o.
- The two-stage superconductivity happens when U is large enough.
- The transition at T_c and changes at T_c' are manifested as switching of the global minimal of free energy.

Method

• Folding the BZ, $H = \sum_{\mathbf{k} \in \frac{1}{2}BZ} \left[\xi_{\mathbf{k}} \left(n_{\mathbf{k},\uparrow} + n_{-\mathbf{k},\uparrow} + n_{\mathbf{k},\downarrow} + n_{-\mathbf{k},\downarrow} \right) + U \left(n_{\mathbf{k}\uparrow} n_{\mathbf{k}\downarrow} + n_{-\mathbf{k}\uparrow} n_{-\mathbf{k}\downarrow} \right) + \left(\Delta c_{\mathbf{k}\uparrow}^{\dagger} c_{-\mathbf{k}\downarrow}^{\dagger} + \Delta c_{-\mathbf{k}\uparrow}^{\dagger} c_{\mathbf{k}\downarrow}^{\dagger} + \text{H.c.} \right) \right],$ where $Z_{\mathbf{k}} = \sum_{n} e^{-E_{n,\mathbf{k}}/T}$ and $\Delta \equiv -V \sum_{\mathbf{k}} \langle c_{-\mathbf{k}\downarrow} c_{\mathbf{k}\uparrow} \rangle$ • Evaluate the Free energy $F_{\mathrm{S}} \left[\Delta \right] = -T \ln Z = -T \sum_{\mathbf{k} \in \frac{1}{2}BZ} \ln Z_{\mathbf{k}},$ • Variational condition $\partial E_{\mathrm{S}} \left[\Delta \right]$

 $\frac{\partial F_{\rm S} \left[\Delta\right]}{\partial \Delta} = 0.$ (& Find out the global minimal of F_s.)

Thermodynamic evolutions

- The 1st-order transition are also manifested in S(T) and derivatives of $F_S(T)$.
- Below T_c , $\Delta(T)$ and thermodynamics shows a 1st-order-like changes at T_c '.
- Two-gap SC is excluded since SC on both FSs occur simultaneously at $\rm T_c.$

Two-stage SC: Cooper-pair distribution & entropy distribution

Cooper-pair amplitude $b_{f k}=\langle c_{-{f k}\downarrow}c_{{f k}\uparrow}
angle$

Entropy distribution $s_{\mathbf{k}} = -\frac{1}{2} \sum_{n} \rho_{n,\mathbf{k}} \ln \rho_{n,\mathbf{k}}$

Two-stage superconductivity

(1) $T > T_c$: no SC, entropy mainly distributed on the Fermi surfaces & within the singly-occupied region.

(2) $T_c^{'} < T < T_c$: SC happens only near the Fermi surfaces, and where the entropy is released simultaneously.

(3) $T < T_c^{'}$: the electrons within the singly-occupied region pairs due to the proximity effect.

Ginzburg-Landau analysis

- From the free-energy evolution, the two-stage SC are manifested as the jumps of minima near $T \approx T_c$ and $T \approx T_c'$, respectively.
- It can be explained from the Ginzburg-Landau analysis by counting up to the eighth-order terms.

$$\delta \mathcal{F}\left[\Delta\right] = \alpha \Delta^2 + \frac{\beta}{2} \Delta^4 + \frac{\gamma}{3!} \Delta^6 + \frac{\eta}{4!} \Delta^8 + O\left(\Delta^8\right),$$

GL analysis at $T \approx T_c \& T \approx T_c'$

$$\delta \mathcal{F}[\Delta] = \alpha \Delta^2 + \frac{\beta}{2} \Delta^4 + \frac{\gamma}{3!} \Delta^6 + \frac{\eta}{4!} \Delta^8 + O\left(\Delta^8\right), \quad (7)$$

where α , β , γ and η are the expansion coefficients and depend on temperature T, and $\eta > 0$, or $\eta = 0$ and $\gamma > 0$, ensures the stability of the system. To study phase transitions for the HK-BCS model, we consider critical regions: $T \approx T_c$ and $T \approx T'_c$.

(1) $T \approx T_c$: It turns out that the occurrence of a first-order transition at $T = T_c$ impose constraints for expansion coefficients at this critical point as follows [53],

$$\alpha > 0, \tag{8a}$$

$$\eta \ge 0, \tag{8b}$$

$$\frac{9\alpha\eta - 2\beta\gamma}{4\gamma^2 - 9\beta\eta} = \frac{4\left(\beta^2 - 2\alpha\gamma\right)}{9\alpha\eta - 2\beta\gamma} > 0.$$
 (8c)

And the superconducting gap at T_c reads

$$\Delta(T = T_{\rm c}) = \sqrt{\frac{3\left(9\alpha\eta - 2\beta\gamma\right)}{4\gamma^2 - 9\beta\eta}} = \sqrt{\frac{12\left(\beta^2 - 2\alpha\gamma\right)}{9\alpha\eta - 2\beta\gamma}}.$$
 (9)

In the limit of $\eta = 0$, it becomes

$$\Delta(T = T_{\rm c}) = \sqrt{\frac{-3\beta}{2\gamma}} = \sqrt{\frac{6\left(2\alpha\gamma - \beta^2\right)}{\beta\gamma}},\qquad(10)$$

which restores the result in Ref. [51].

(2) $T \approx T'_c$: In the presence of the first-order-like jump at $T = T'_c$, the sign of expansion coefficients can be determined in the critical region as follows [53],

$$\alpha < 0, \ \beta > 0, \ \gamma < 0 \ \text{and} \ \eta > 0. \tag{11}$$

The critical condition at $T = T'_c$ is given by

$$\alpha = \gamma \left(\frac{\beta}{\eta} - \frac{\gamma^2}{3\eta^2}\right),\tag{12}$$

and the temperature regions $T > (<)T'_c$ are separated from each other in accordance with the inequality as follows,

$$\alpha < (>)\gamma\left(\frac{\beta}{\eta} - \frac{\gamma^2}{3\eta^2}\right), \text{ for } T > (<)T'_{c}.$$
(13)

The superconducting order parameters at $T_{\rm c}^{\prime\pm}$ read

$$\Delta_{\min} \equiv \Delta(T = T_{c}^{\prime+}) = \sqrt{-\frac{\gamma}{\eta} - \sqrt{\frac{\gamma^{2}}{\eta^{2}} - \frac{6\alpha}{\gamma}}}, \quad (14a)$$
$$\Delta_{\min}^{\prime} \equiv \Delta(T = T_{c}^{\prime-}) = \sqrt{-\frac{\gamma}{\eta} + \sqrt{\frac{\gamma^{2}}{\eta^{2}} - \frac{6\alpha}{\gamma}}}. \quad (14b)$$

To study the temperature dependence $\Delta(T)$ around $T'_{\rm c}$, we introduce the dimensionless parameter $t' = (T - T'_{\rm c}) / T'_{\rm c}$, and find for small t',

$$\Delta(T) \approx \Delta(T_{\rm c}^{\prime\pm}) \left(1 - b_{\pm}t^{\prime}\right) \text{ at } T \gtrless T_{\rm c}^{\prime}, \qquad (15)$$

where $b_{\pm} > 0$ are two positive parameters that can be determined from experimental data or microscopic theory [53].

HK-BCS model: Phillips's works v.s. our works

Phillips's works

• Cooper instability: only for electrons in Ω_0 .

$$1=-rac{g}{L^d}{\sum}_{k\in arOmega_0}rac{\langle 1-n_{k\uparrow}+n_{-k\downarrow}
angle}{E-2\xi_k-U\langle n_{k\downarrow}+n_{-k\uparrow}
angle}$$

• Finite-T mean-field in <u>strong-pairing regime</u>:

> 1st-order SC transition.

> Switch of the minima of free energy at T_c (or T_p)

Our works

Cooper instability: not only for electrons in Ω₀, but also for Ω₁.

$$1 = \sum_{\mathbf{k}\in\Omega_0} \frac{V}{2\xi_{\mathbf{k}} - E_C} + \frac{1}{4} \sum_{\mathbf{k}\in\Omega_1} \frac{V}{\xi_{\mathbf{k}} + U - E_C}.$$

- Finite-T mean-field in <u>weak and intermediate-pairing</u> <u>regime</u>:
 - > 1st-order SC transition & two-stage SC.
 - > Switch of the minima of free energy at $T_c \& T_c'$.

Our works unveiled a hidden superconductivity contributed from the singly-occupied electrons (Ω_1), which manifested in $\Delta(T)$ as a two-stage SC in weak-pairing regime, and hidden in a crossover in strong-pairing regime.

Interesting physics from HK model

- An exactly-solvable strongly-correlated model which can generate Mott physics at strong U.
- The existence of zeros in Green's function is beyond the conventional Luttinger's theorem, and the existence of Luttinger surfaces can also show a SC instability, universal to the strongly-correlated SC?
- A sign-changing U can generate Fermi arcs and pesudogap state.

.

- A Green's function is similar to the phenomenological form of Yang-Rice-Zhang's ansatz for cuprates, any significance?
- For the entropy, not like the 'area-law' for the Fermi surfaces, the large spin-degeneracy in singly-occupied states suggest a 'volume-law'.

Summary

Two-stage superconductivity

- HK-BCS model exhibit a novel two-stage SC from a NFL state.
- As T lowering, at the first stage, the SC happens only near the Fermi surfaces below T_c ; while at the second stage, the SC within the singly-occupied region suddenly pairs also below T_c' ($T_c' < T_c$).
- More extensions are needed to account for the many unsolved experiments in unconventional SC, e.g., kdependent U+ unconventional pairing? HK+el-ph interaction?

Collaborators

Prof. Fu-chun Zhang (UCAS, KITS)

Prof. Yi Zhou (IOP, CAS)

Dr. Vivek Mishra (UCAS, KITS)

Thanks for your attention!