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1. Topological orders and toric code model
1.1 From symmetry breaking to topological order

• Phases classified by symmetries

Symmetry breaking in Ising model

Continuous Discrete 

• 1D Ising model

• One spin-1/2 on each site

• 𝐻 = −σ𝑖 𝜎𝑖
𝑧𝜎𝑖+1

𝑧 , with global symmetry 
generated by 𝑆 = ς𝑖 𝜎𝑖

𝑥

• At 𝑇 = 0,  symmetry spontaneously break, 
two degenerate ground states |000…0⟩
and 111…1 , local order parameter 
𝜎𝑧 = ±1. 

• At 𝑇 > 0, symmetry restored, 𝜎𝑧 = 0.

[6] Strocchi, F. (2008). Symmetry Breaking in the Ising Model. In: Symmetry Breaking. Lecture Notes in Physics, vol 732. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-
73593-9_21



• Quantum Hall effect 

Beyond symmetry breaking paradigm 

• Beyond symmetry breaking 
• Short range entangled: symmetry protected 

topological/trivial (SPT) order

• Long range entangled: topological order

Fig from Ref.[7]

QHE shows transitions without any 
change of symmetries

[7] K. v. Klitzing, G. Dorda, and M. Pepper. New Method for High-Accuracy Determination of the Fine-Structure Constant Based on Quantized Hall Resistance. Phys. Rev. Lett. 45, 494 (1980)
[8] Xiao-Gang Wen. Choreographed entanglement dances: Topological states of quantum matter. Science 363, 6429 (2019).

Fig from Ref.[8]

• Gapped phases of quantum matter 



• 2D toric code model (TCM)

Topologically ordered 2D toric code model

• Some properties of topological 
orders
• Ground states: topological 

degeneracy 
• Excited states: fusion and braiding 

statistics
• Entanglement: topological 

entanglement entropy
• …

Though 2D TCM looks complicated , it is exactly 
solvable, as all terms commute with each other
(notice that 𝜎𝑖

𝑥, 𝜎𝑖
𝑧 = 0).

[9] A. Y. Kitaev, Fault-tolerant quantum computation by anyons, Ann. Phys. (N.Y.) 303, 2 (2003).

1. Topological orders and toric code model
1.2 2D toric code model 

𝐻 = −σ𝑝𝐴𝑝 − σ𝑣𝐵𝑣 ,

𝐴𝑝 = ς𝑖∈p𝜎𝑖
𝑥,

𝐵𝑣 = ς𝑖∈𝑣𝜎𝑖
𝑧 .



• 2D toric code model

String-net picture of 2D TCM ground states

• String-net picture of 2D TCM ground 
states
• We use Ising configurations, where each spin is of 

an eigenstate of 𝜎𝑧 with eigenvalue ±1, as a 
complete basis of the Hilbert space. 

[10] Michael A. Levin and Xiao-Gang Wen, String-net condensation: A physical mechanism for topological phases, Phys. Rev. B 71, 045110 (2005).

𝐻 = −σ𝑝𝐴𝑝 − σ𝑣𝐵𝑣 ,

𝐴𝑝 = ς𝑖∈p𝜎𝑖
𝑥,

𝐵𝑣 = ς𝑖∈𝑣𝜎𝑖
𝑧 .

Due to the exactly solvability, we can obtain a 
ground state |𝜓⟩ by solving the following equations: 

𝐵𝑣 𝜓 = 𝜓 , ∀ 𝑣,
𝐴𝑝 𝜓 = 𝜓 , ∀ 𝑝,

𝜓 =

Here down spins (i.e. 𝜎𝑧 = −1) are regarded as forming strings.
Then,  we can see that 𝐵𝑣 𝜓 = 𝜓 ,∀ 𝑣 requires all strings to be 
closed; 𝐴𝑝 𝜓 = 𝜓 , ∀ 𝑝 requires configurations contractible 
closed strings to be equally superpositioned.



Topological degeneracy of 2D TCM

[9] A. Y. Kitaev, Fault-tolerant quantum computation by anyons, Ann. Phys. (N.Y.) 303, 2 (2003).
[10] Michael A. Levin and Xiao-Gang Wen, String-net condensation: A physical mechanism for topological phases, Phys. Rev. B 71, 045110 (2005).

𝜓 =

Then,  we can see that:
1) 𝐵𝑣 𝜓 = 𝜓 , ∀ 𝑣 requires all strings to be closed; 
2) 𝐴𝑝 𝜓 = 𝜓 ,∀ 𝑝 requires configurations differed by 
contractible closed strings to be equally superpositioned.

Thus a loop condensed ground state |𝜓⟩ can be largely 
determined by the above conditions (dubbed as A and B 
constraints for convenience). 
The only ambiguity is originate from the existence of non-
contractible closed strings. Locally |𝜓⟩ is featureless.

On 2-torus (PBC), by counting non-contractible 
closed strings, we obtain 𝐺𝑆𝐷 = 22 = 4. 

Mathematically, the 
number of independent 
non-contractible closed 
strings is the first Betti
number, that is a 
topological invariant of 
the base manifold.



2D TCM as a topological quantum memory

[11] Eric Dennis, Alexei Kitaev, Andrew Landahl and John Preskil, Topological quantum memory, J. Math. Phys. 43, 4452 (2002).

From a perspective of quantum 
information, we can use the ground 
state subspace as two logical qubits.

|00⟩

|01⟩

|10⟩

|11⟩

To do a bit-flip operation, we need to use apply a non-
local string operator (dubbed as X-type logical operator):

𝑊 𝑙 = ς𝑖∈𝑙 𝜎𝑖
𝑥,

Here l is a non-contractible closed string (also dubbed as 
loop).

Because such logical operators are non-local, local 
pertubations cannot flip the encoded qubits. 

Nevertheless, when 𝑇 > 0, due to the free mobility of 
excitations (to be introduced), the encoded information can 
be blurred.



Charge excitation 𝑒
-endpoint of ς𝑖∈𝑙 𝜎𝑖

𝑥

Flux excitation 𝑚
-endpoint of ς𝑖∈𝑙 𝜎𝑖

𝑧

As we can see, Hamilton terms are flipped at the end of open 
string operators, leads to excitations located at such endpoints.

These excitations are topological, in the sense that a single 
excitation cannot be generated locally.
At 𝑇 > 0, under thermal perturbation, a pair of topological 
excitations may circle the torus and form a logical operator, 
which disturbs the information encoded in ground states.

Topological excitations of 2D TCM

[9] A. Y. Kitaev, Fault-tolerant quantum computation by anyons, Ann. Phys. (N.Y.) 303, 2 (2003).
[10] Michael A. Levin and Xiao-Gang Wen, String-net condensation: A physical mechanism for topological phases, Phys. Rev. B 71, 045110 (2005).

• 2D toric code model

𝐻 = −σ𝑝𝐴𝑝 − σ𝑣𝐵𝑣 ,

𝐴𝑝 = ς𝑖∈p𝜎𝑖
𝑥,

𝐵𝑣 = ς𝑖∈𝑣𝜎𝑖
𝑧 .

Then we can consider open strings, which leads to 
excited states.



Fusion and braiding in 2D TCM

[9] A. Y. Kitaev, Fault-tolerant quantum computation by anyons, Ann. Phys. (N.Y.) 303, 2 (2003).
[10] Michael A. Levin and Xiao-Gang Wen, String-net condensation: A physical mechanism for topological phases, Phys. Rev. B 71, 045110 (2005).

• Braiding statistics in 2D TCM • Fusion rules in 2D TCM

As Abeilian anyons, topological excitations 
have non-trivial mutual statistics: the state 
acquires a −1 phase when 𝑒 circles 𝑚 and the 
contrary (while their self-statistics are trivial).

When two excitations are very close, the pair behaves like a single 
new excitation: as a trivial example, a pair of 𝑒 excitations now can 
be locally generated, thus it equals to a trivial topological excitation 
1. This process is a fusion (for abelian excitations, they form an 
Abelian group under fusion). 
Non-trivially, the fusion result of 𝑒 and 𝑚 dubbed as 𝜖 is a fermion

1 𝑒 𝑚 𝜖

1 1 𝑒 𝑚 𝜖

𝑒 𝑒 1 𝜖 𝑚

𝑚 𝑚 𝜖 1 𝑒

𝜖 𝜖 𝑚 𝑒 1



Long range entanglement in 2D TCM

[12] Alexei Kitaev and John Preskill, Topological Entanglement Entropy, Phys. Rev. Lett. 96, 110404 (2006).
[13] Michael A. Levin and Xiao-Gang Wen, Detecting Topological Order in a Ground StateWave Function, 96, 110405 (2006).
[14] G. Vidal, Entanglement Renormalization, Phys. Rev. Lett. 99, 220405 (2007).

• Topological entanglement entropy • Entanglement renormalization
Due to the long range entangled nature of 2D 
TCM ground states, the entanglement entropy 
contains a constant term, in addition to the 
area law term of local gapped systems.

𝑆 𝜌𝑅 = 𝛼𝐿 − 𝛾, where −𝛾 = −log 2 is the 
topological entanglement entropy. 

Due to the existence of short range entanglement, without 
appropriate treatment, during a renormalization process the 
dimension of local Hilbert space would explode. 
To avoid this problem, Vidal proposed a renormalization scheme 
where the short range entanglement is also renormalized.Fig from Ref.[13]

Long range entanglement pattern is preserved in this process, 
thus it is convenient to study topological orders.

Fig from Ref.[14]



• 3D toric code model (TCM)

Topologically ordered 3D toric code model

The 3D TCM has exactly the same form as 2D TCM, 
and we can also use the string-net picture to solve 
all ground states and excited states. 

[15] Alioscia Hamma, Paolo Zanardi and Xiao-Gang Wen, String and membrane condensation on three-dimensional lattices, Phys. Rev. B 72, 035307 (2005).

1. Topological orders and toric code model
1.3 3D toric code model 

𝐻 = −σ𝑝𝐴𝑝 − σ𝑣𝐵𝑣 ,

𝐴𝑝 = ς𝑖∈p𝜎𝑖
𝑥,

𝐵𝑣 = ς𝑖∈𝑣𝜎𝑖
𝑧 .

• Some similarities between 2D and 
3D TCM:
• String-net pattern: ground states of 3D 

TCM also have loop condensation.

• Topological degeneracy: the GSD of 3D 
GSD can also be obtained by counting 
non-contractible loops.

• Long range entanglement: 3D TCM also 
has constant topological entanglement 
entropy.



• Loop excitation in 3D TCM

Topological excitations in 3D TCM

• Braiding statistics in 3D TCM 

[15] Alioscia Hamma, Paolo Zanardi and Xiao-Gang Wen, String and membrane condensation on three-dimensional lattices, Phys. Rev. B 72, 035307 (2005).
[16] M. G. Alford and Frank Wilczek, Aharonov-Bohm interaction of cosmic strings with matter, Phys. Rev. Lett. 62, 1071 (1989).

In addition to loop condensation, 3D TCM 
ground states also have closed membrane 
condensation.

Therefore, we have flux loop excitations at 
the boundary of an open membrane ς𝑖∈𝑚𝜎𝑖

𝑧 . 

In 3D, point excitations are all fermions or bosons. 
But due to the existence of loop excitations, we can 
still have non-trivial braiding statistics.

Above is one of the simplest example, that leads to 
a phase −1.



2. Fracton (topological) orders and X-cube model
2.1 From (pure) topological order to fracton order 

• Recently, topological excitations with 
restricted mobility are discovered in 
various topologically ordered systems, that 
introduces a series of exotic properties.

• As topological excitations are now restricted 
in certain subspaces, intuitively, we expect 
the geometry of such subspaces to be a 
part of the ``topological’’ order (thus TCM-
like orders are dubbed as pure topological 
orders).

More than topology

[17] Sagar Vijay, Jeongwan Haah, and Liang Fu. A new kind of topological quantum order: A dimensional hierarchy of quasiparticles built from stationary excitations. Phys. Rev. B 92, 
235136 (2015).
[18] Kevin Slagle and Yong Baek Kim, X-cube model on generic lattices: Fracton phases and geometric order, Phys. Rev. B 97, 165106 (2018).

Fig from Ref.[18]



• 3D X-cube model 

Cage-net picture of X-cube model

[19] Sagar Vijay, Jeongwan Haah, and Liang Fu, Fracton Topological Order, Generalized Lattice Gauge Theory and Duality, Phys. Rev. B 94, 235157 (2016).
[20] Abhinav Prem, Sheng-Jie Huang, Hao Song, and Michael Hermele, Cage-Net Fracton Models, Phys. Rev. X 9, 021010 (2019).

2. Fracton (topological) orders and X-cube model
2.2 X-cube model

𝐻 = −σ𝑐 𝐴𝑐 − σ𝑣σ𝑙𝐵𝑣
𝑙 ,

𝐴𝑐 = ς𝑖∈𝑐 𝜎𝑖
𝑥,

𝐵𝑣
𝑙 = ς𝑖∈𝑣𝑙

𝜎𝑖
𝑧 .

• Cage-net picture of X-cube model
• X-cube model is also exactly solvable.

• Similar to toric code model, we can describe ground 
states and excited states of X-cube model with strings 
formed of down spins.

• However, now in a ground state, strings are not simply 
required to be closed, but to be ``closed’’ cages.

Similar to toric code model, each link is assigned with a 
spin-1/2.
An 𝐴𝑐 term is the product of the 𝑥-components of the 
𝟏𝟐 spins on the links around cube 𝑐, a 𝐵𝑣

𝑙 term is the 
product of the 𝑧-components of the 𝟒 spins on the 
links around vertex 𝑣 and inside a plane perpendicular 
to direction 𝑙. 



• ``Rigid’’ generation operators

Topological excitations of X-cube model

[19] Sagar Vijay, Jeongwan Haah, and Liang Fu, Fracton Topological Order, Generalized Lattice Gauge Theory and Duality, Phys. Rev. B 94, 235157 (2016).
[21] Wilbur Shirley, Kevin Slagle and Xie Chen, Foliated fracton order from gauging subsystem symmetries, SciPost Phys. 6, 041 (2019).

• Subdimensional particles

Similar to 3D TCM, we have string and membrane generation 
operators. But now the strings and membranes are ``rigid’’: 
• Additional 𝑒 excitations appear at the turning points of strings.
• 𝑚 excitations are point-like and appear at the corners of 

membranes.

Lineon: generated by ς𝑖∈𝑙 𝜎𝑖
𝑥.

Turning points of string 𝑙 leads 
to additional energy cost.

Fracton: generated by ς𝑖∈𝑚 𝜎𝑖
z.

Corners of membrane 𝑚 leads 
to additional energy cost.

Planon: generated by ς𝑖∈𝑚𝜎𝑖
z, 

where membrane 𝑚 reduced 
to a string.



• Location dependent fusion
• Due to the mobility restrictions, the fusion 

rules now depend on the location of 
excitations.

• Therefore, we can recognize the mobile 
subspace as a part of the type (i.e. 
superselection sector) of excitations.

Fusion and statistics of X-cube model

[22] Shriya Pai and Michael Hermele, Fracton fusion and statistics, Phys. Rev. B 100, 195136 (2019).

• Another way to realize ``braiding’’ in 3D
• Though X-cube model only has point-like excitations, 

due to the mobility restriction, we can still have non-
trivial statistics.

Thus we have infinite 
types of excitations
in the thermodynamic 
limit.

Fig from Ref.[23]

As we can see, if certain 
virtual processes are 
allowed, we can have 
non-trivial processes for a 
lineon and a fracton, that 
gives a phase −1.



• ``Rigid’’ logical operators
• For example, we consider the 𝜎𝑧 configuration 

basis. Non-contractible strings can also 
change the ground state, but now they are 
also required to be rigid.

Topological degeneracy of X-cube model

[19] Sagar Vijay, Jeongwan Haah, and Liang Fu, Fracton Topological Order, Generalized Lattice Gauge Theory and Duality, Phys. Rev. B 94, 235157 (2016).
[23] Wilbur Shirley, Kevin Slagle, Zhenghan Wang, and Xie Chen, Fracton Models on General Three-Dimensional Manifolds, Phys. Rev. X 8, 031051 (2018).

• From the perspective of foliation
• X-cube ground states are also locally indistinguishable, 

thus the degeneracy is also topological. 

• In fact, the degeneracy is found to be related to the 
topology of 2D subsystems (dubbed as leaves in the 
language of foliation, to be introduced in next section)

Then, the action of 
logical operators is 
location-dependent. 
On 3-torus, we have 
log2 𝐺𝑆𝐷 = 2𝐿𝑥 +
2𝐿𝑦 + 2𝐿𝑧 − 3.

log2𝐺𝑆𝐷 = 𝑏𝑥𝐿𝑥 + 𝑏𝑦𝐿𝑦 + 𝑏𝑧𝐿𝑧 − 𝑐,
where 𝑏𝑖 is first Betti number. 

Fig from Ref.[23]



Fracton order as topological quantum memory

[24] Jeongwan Haah, Local stabilizer codes in three dimensions without string logical operators, Phys. Rev. A 83, 042330 (2011).
[25] Michael Pretko, Xie Chen and Yizhi You, Fracton phases of matter, International Journal of Modern Physics A Vol. 35, No. 06, 2030003 (2020).

As we’ve demonstrated for toric codes, the mobile 
excitations can disturb the encoded information.
For a fracton order with only fracton excitations 
(dubbed as Type-II fracton orders), such problems 
may be avoided.

Haah’s code is a typical Type-II fracton ordered 
model, where topological excitations are generated at 
the corners of a fractal.
Thus Haah’s code is expected to be a more robust 
topological quantum memory.

Fig from Ref.[24]
Fig from Ref.[25]



• Mobility and deformability restriction 

Fracton physics of spatially extended excitations

[1] MYL and Peng Ye, Fracton physics of spatially extended excitations, Phys. Rev. B 101, 245134 (2020).

• Complex excitations

We constructed a series of exactly solvable models 
labeled by 4 integers. For example, [1,2,3,4] model 
contains loop excitations with restricted mobility.

As we can see, as a loop cannot escape from the 
mobile plane by deforming, either, the mobility 
restriction naturally extends to deformability restriction.

Due to the existence of deformability restriction, 
loops can fuse into string-like excitations with 
non-manifold shapes:

The deformability restriction prevents the loops 
restricted in perpendicular planes to totally cancel each 
other, and what remains is such a complex excitation. 



3. Foliated fracton order theory of Type-I fracton orders

• Dropping short range entanglement

An obstacle to ERG transformation

[5] MYL, Peng Ye, Hierarchy of Entanglement Renormalization and Long-Range Entangled States,  arXiv:2211.14136 [quant-ph].
[23] Wilbur Shirley, Kevin Slagle, Zhenghan Wang, and Xie Chen, Fracton Models on General Three-Dimensional Manifolds, Phys. Rev. X 8, 031051 (2018).
[26] Miguel Aguado and Guifré Vidal, Entanglement Renormalization and Topological Order, Phys. Rev. Lett. 100, 070404 (2008). 

In a 2D TCM ground 
state, we can use 
local unitary 
transformations to 
decouple some 
spins, and drop such 
unentangled spins.

• A paradox

If we want to change the size of an X-cube model 
with ERG, we expect the system size to be changed.

However, log2 𝐺𝑆𝐷 = 2𝐿𝑥 + 2𝐿𝑦 + 2𝐿𝑧 − 3 means 
that the topological GSD would also be changed, 
while ERG should not influence long range 
entanglement pattern.

How to understand that long range entanglement 
pattern of fracton orders with ERG? 



• Source of entanglement

Generalized ERG and foliation

[23] Wilbur Shirley, Kevin Slagle, Zhenghan Wang, and Xie Chen, Fracton Models on General Three-Dimensional Manifolds, Phys. Rev. X 8, 031051 (2018).
[26] Miguel Aguado and Guifré Vidal, Entanglement Renormalization and Topological Order, Phys. Rev. Lett. 100, 070404 (2008). 
[27] Brian Swingle and John McGreevy, Renormalization group constructions of topological quantum liquids and beyond, Phys. Rev. B 93, 045127 (2016).

• Foliated fracton order theory
The authors of [23] noticed that, by 
allowing 2D TCM ground states to be 
added/removed, the size and GSD of 
X-cube model can be changed 
consistently.

That is to say, the fracton order of X-cube model 
can be understood by considering the ``total 
foliation’’ of the base manifold, i.e., how is the 
base manifold partitioned to a series of 2D 
subsystems dubbed as leaves.

Fig from Ref.[23]

As a result, we have 
log2 𝐺𝑆𝐷 = 𝑏𝑥𝐿𝑥 + 𝑏𝑦𝐿𝑦 + 𝑏𝑧𝐿𝑧 − 𝑐. 
Where 𝑏𝑖 is the first Betti number of leaves stacked 
along direction 𝑖, 𝑐 depends on the topology of 
intersection.



• Taming the infinity

3D Type-I fracton phases

[23] Wilbur Shirley, Kevin Slagle, Zhenghan Wang, and Xie Chen, Fracton Models on General Three-Dimensional Manifolds, Phys. Rev. X 8, 031051 (2018).
[28] Wilbur Shirley, Kevin Slagle, Xie Chen, Fractional excitations in foliated fracton phases, Annals of Physics Volume 410, November 2019, 167922.

• 3D Type-I fracton phases

In thermodynamic limit, the 
``topological’’ degeneracy and number 
of types of ``topological’’ excitations all 
go to infinity, that prevents us to 
understand fracton orders with such 
data.

Foliation theory shows how such 
infinity is originated from concrete 
topological data.

Foliated fracton orders urge us to to use a new 
definition of phases for such system: two states 
belong to the same 3D Type-I fracton phase 
when they can be connected by local unitary 
transformations combined with 
addition/removal of 2D pure topological 
ordered states.



• Pure and fracton topological orders

Hierarchy of long range entanglement patterns

[5] MYL, Peng Ye, Hierarchy of Entanglement Renormalization and Long-Range Entangled States,  arXiv:2211.14136 [quant-ph].
[23] Wilbur Shirley, Kevin Slagle, Zhenghan Wang, and Xie Chen, Fracton Models on General Three-Dimensional Manifolds, Phys. Rev. X 8, 031051 (2018).
[29] Han Ma, Ethan Lake, Xie Chen, and Michael Hermele, Fracton topological order via coupled layers, Phys. Rev. B 95, 245126 (2017).

• Hierarchy of LRE states

Such foliated fracton orders that depends on the 
foliation structure shows that their properties can be 
understood based on the more familiar pure 
topological orders.

Besides, it shows a relation between fracton and pure 
topological orders: a fracton order may be constructed 
from pure topological orders in a non-trivial way (i.e. 
inequivalent to decoupled stacks), just like pure 
topological orders constructed from decoupled spins.

In [5], We investigated the possibility of further using X-
cube ground states to build more complex orders, and 
use the result to build more complex orders, and so 
on…

We obtain a series of infinite towers of models, where a 
level-𝑛 ground state can be constructed from level-(𝑛 −
1) ground states.



Summary

• Topological orders are characterized by long range entanglement 
patterns.

• Fracton orders show complicated long range entanglement 
patterns, where geometry is also involved.

• A generalized entanglement renormalization scheme allows us to 
understand fracton orders with pure topological orders.



Thanks for your attention!
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