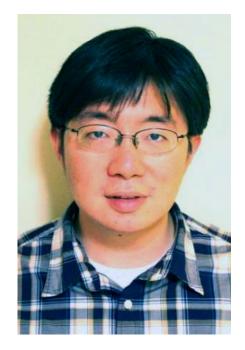
Metal-Insulator Transition with Charge Fractionalization

Xiao-Chuan Wu (吴啸川) $UCSB \rightarrow UChicago$

HKU-UCAS young physicist forum (May 10, 2023)

Collaborators

UCSB



 $UCSB \rightarrow Cornell$

Cenke Xu

Yichen Xu

$UCSB \rightarrow Harvard$

Zhu-Xi Luo

UCSB \rightarrow U. Utah

Chao-Ming Jian

Mengxing Ye

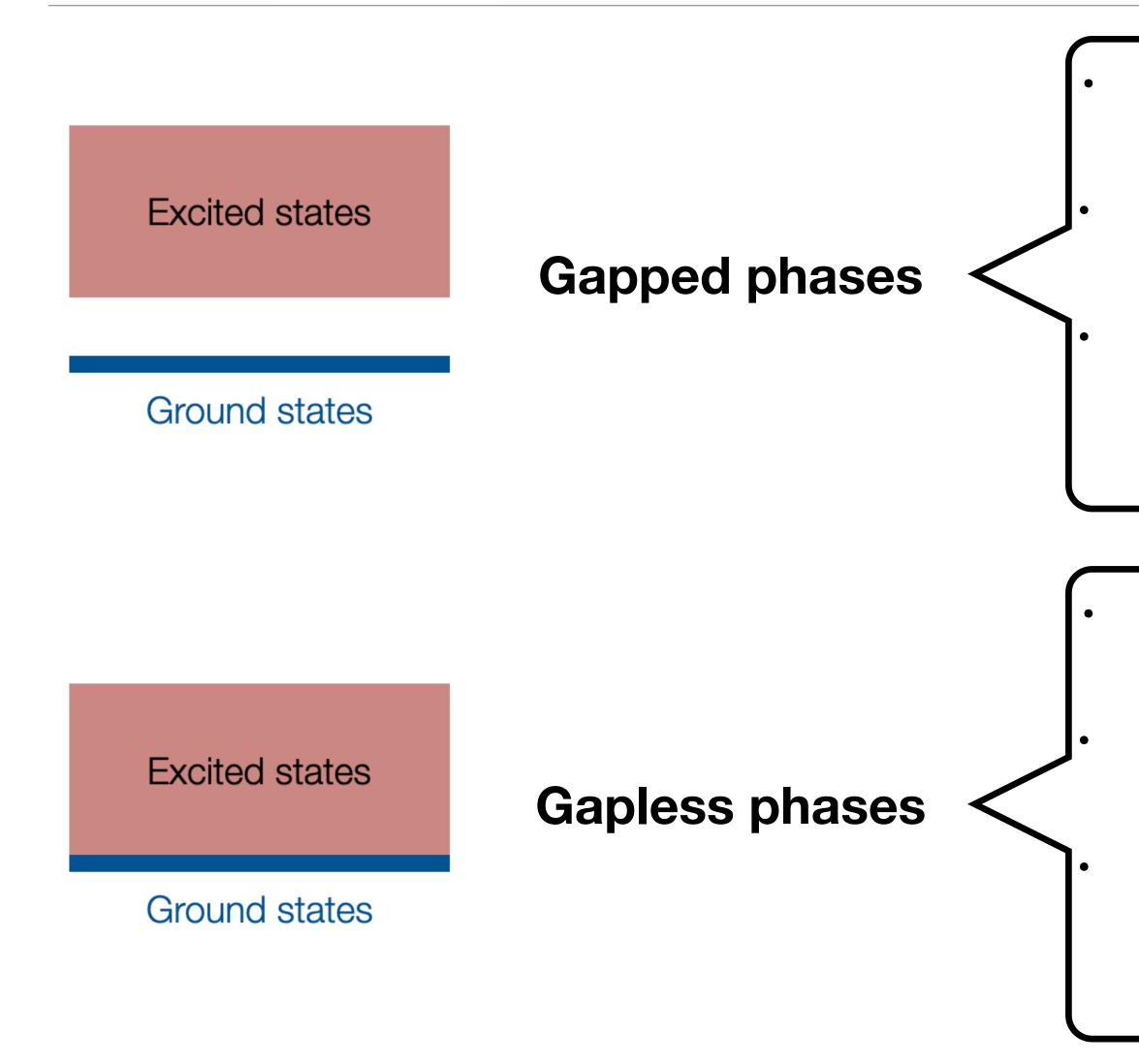
Y. Xu, XW, M. Ye, Z.-X. Luo, C.-M. Jian, and C. Xu, (arXiv:2106.14910) PRX 12, 021067 (2022)

Content

- I. Brief introduction to quantum phases and phase transitions.
- transition with charge fractionalization.

• I. Experimental motivations and a theoretical proposal for continuous Mott

Quantum phases of matter (equilibrium)



Trivial gapped phases

i.e., trivial product states

Symmetry-protected topological (SPT) phases

e.g., topological insulators/superconductors

Topologically ordered phases

e.g., fractional quantum Hall, gapped spin liquids

.....

Goldstone modes (Landau ordered phases)

e.g., superfluid, Néel order

Landau Fermi liquids

i.e., all ordinary metals

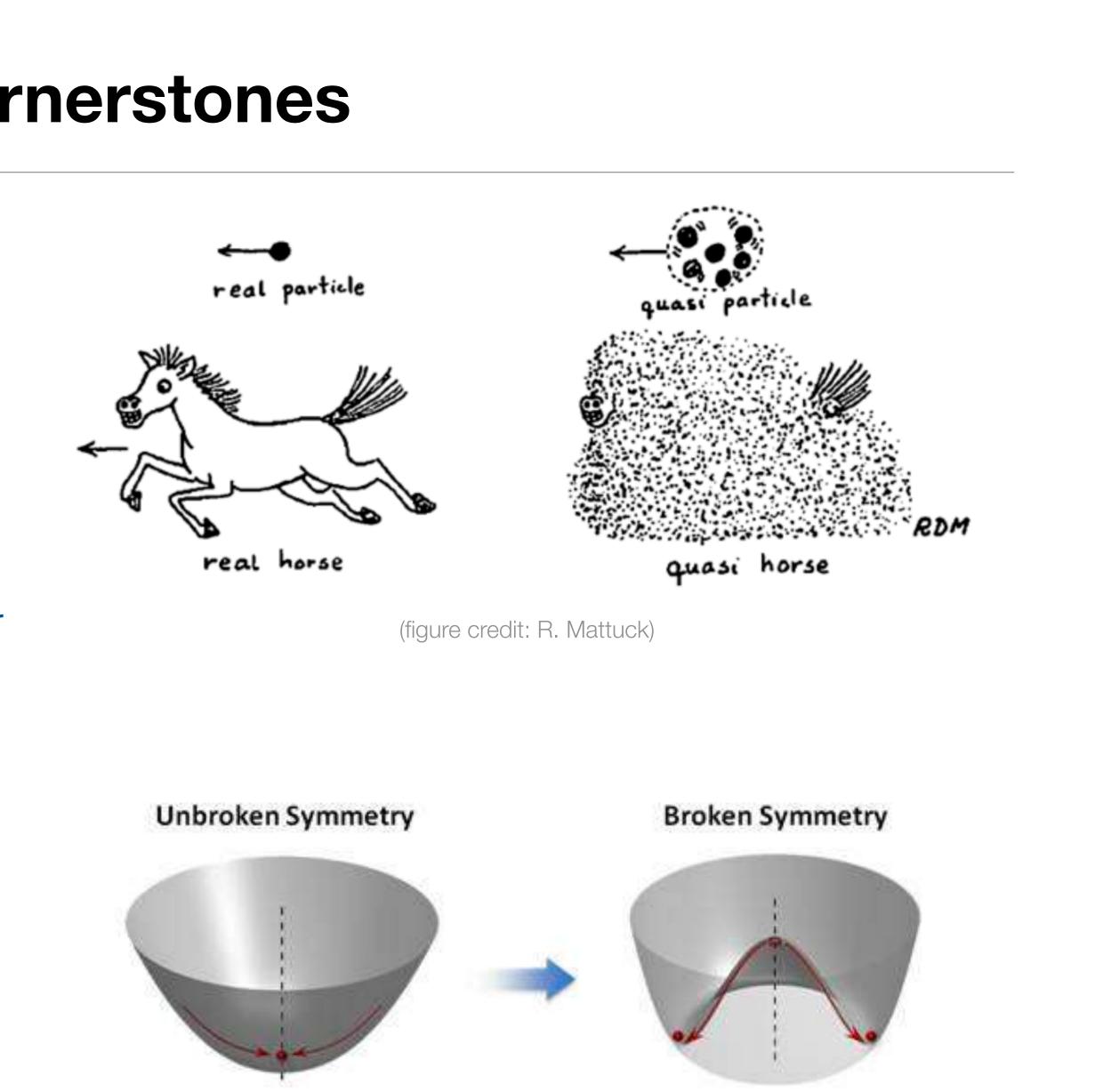
Coulomb phase (emergent gauge theories)

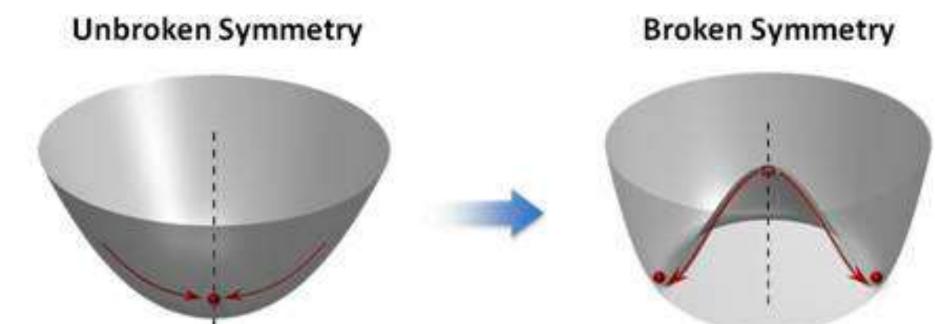
e.g., emergent photons in quantum spin ice

.....

Quantum phases of matter: two cornerstones

- Landau Fermi liquid theory: despite • interactions between electrons, collective excitations (quasiparticles) are adiabatically connected to original electrons (with the same quantum numbers and statistics).
- Landau symmetry paradigm: phases of matter \rightarrow by how states represent their symmetries (whether symmetries are spontaneously broken, whether symmetries are anomalous).
- The modern extension of the Landau paradigm by generalized symmetries (e.g., higher-form symmetries) and 't Hooft anomalies.





(figure credit: Peking University)

Quantum phases of matter

Symmetry is anomalous (boundary)

Spontaneous symmetry breaking

Landau quasiparticles

- Landau symmetry paradigm
- Landau Fermi liquid theory

Trivial gapped phases

i.e., trivial product states

Symmetry-protected topological (SPT) phases

e.g., topological insulators/superconductors

Topologically ordered phases

e.g., fractional quantum Hall, gapped spin liquids

Goldstone modes (Landau ordered phases)

e.g., superfluid, Néel order

Landau Fermi liquids

i.e., all ordinary metals

Coulomb phase (emergent gauge theories)

e.g., emergent photons in quantum spin ice

(photons = Goldstone modes of 1-form symmetry)

Aside: topological order as SSB of 1-form symmetry

• are carried by quasiparticles); p-form symmetries are acting on p-dimensional objects.

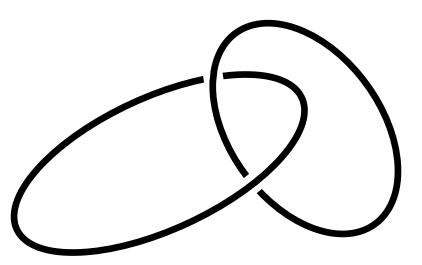
Ordinary symmetries (0-form symmetries) are acting on 0-dimensional objects (quantum numbers)

Aside: topological order as SSB of 1-form symmetry

- are carried by quasiparticles); p-form symmetries are acting on p-dimensional objects.
- $\nu = 1/k$ Laughlin quantum Hall state has \mathbb{Z}_k 1-form symmetry acting on Wilson loops
- \mathbb{Z}_k 1-form symmetry transformations are given by braiding of anyons

- U(1) Chern-Simons at level k invariant under $a \rightarrow a + \gamma/k$ with flat connection γ \bullet

Ordinary symmetries (0-form symmetries) are acting on 0-dimensional objects (quantum numbers)



Deconfined phase of gauge theory \leftrightarrow Spontaneous symmetry breaking of 1-form symmetry

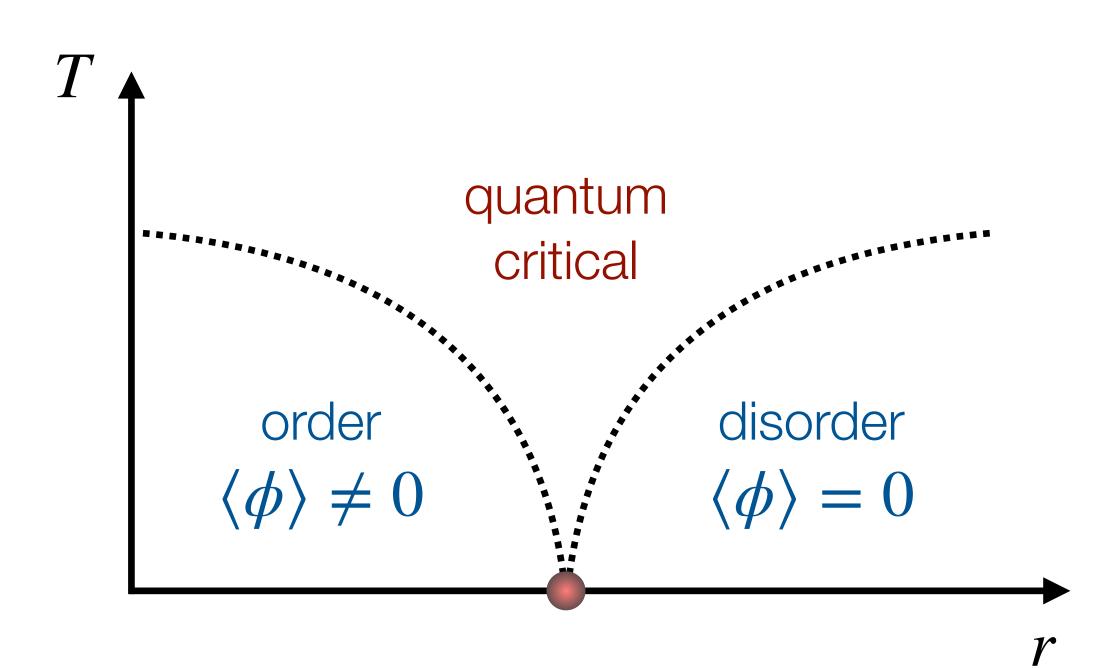
Modern generalizations of symmetries:

higher-form symmetries, subsystem symmetries, categorical symmetries (non-invertible symmetries), higher-group symmetries, loop-group symmetries, etc.

> See reviews McGreevy, arXiv:2204.03045 Cordova et al, arXiv:2205.09545

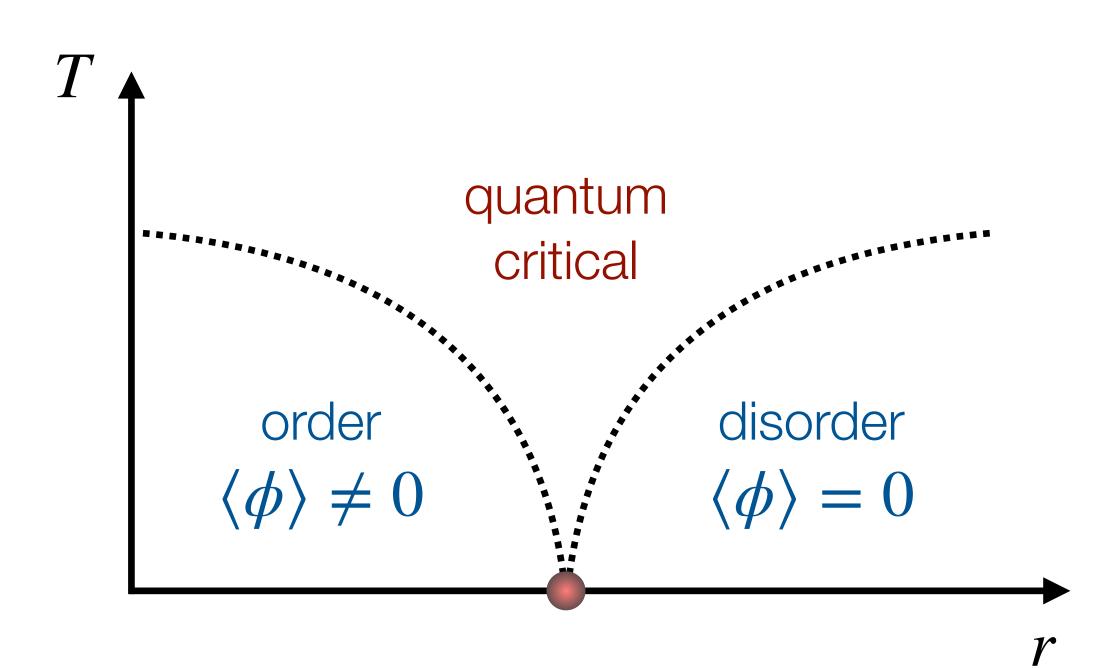
Quantum phase transitions in insulators

Landau ordinary symmetry-breaking transitions (order parameter ϕ)

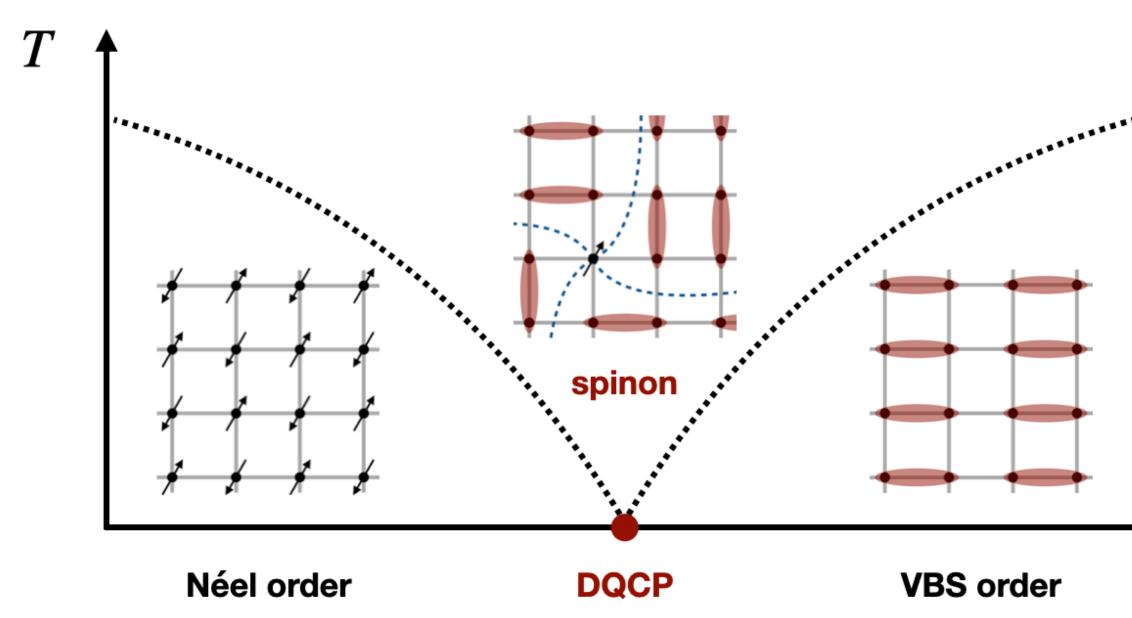


Quantum phase transitions in insulators

Landau ordinary symmetry-breaking transitions (order parameter ϕ)

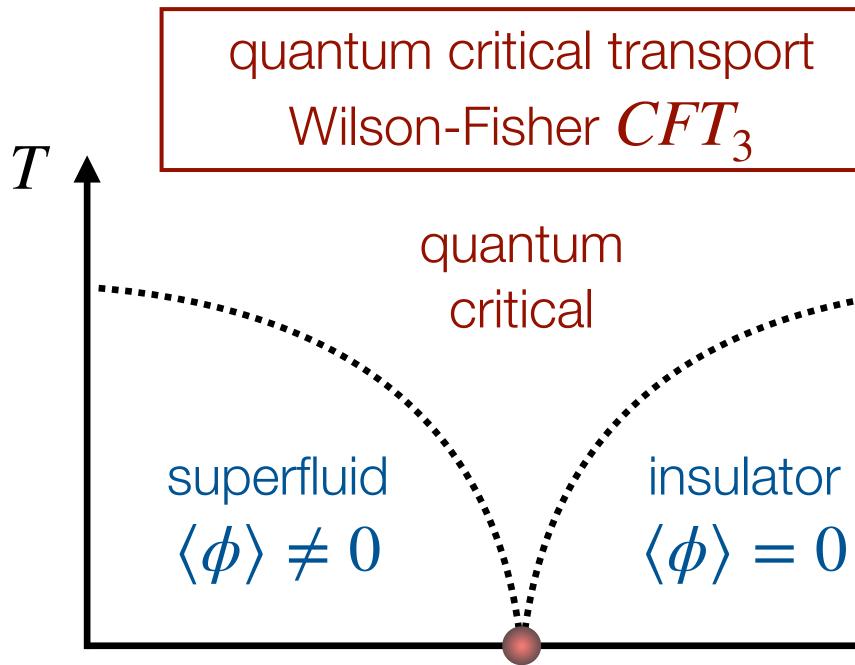


Deconfined quantum criticality (Néel-VBS transition) Senthil-Vishwanath-Balents-Sachdev-Fisher 2004



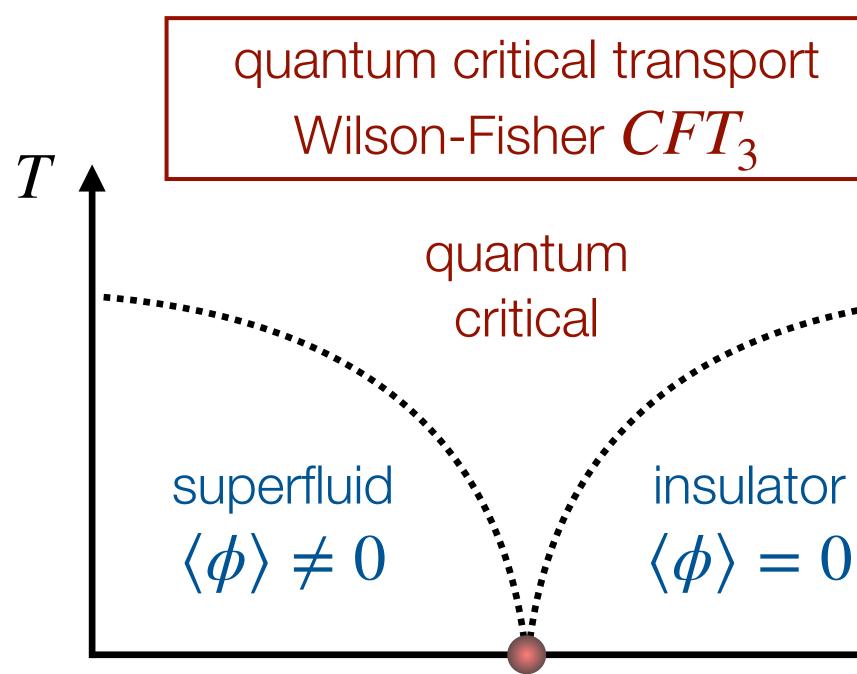
Landau symmetry-breaking transition in 2+1D

$$S = \int d\tau d^2 x \, |\partial_{\tau} \phi|^2 + |\nabla \phi|^2 + r |\phi|^2 + u |\phi|^4 + \dots$$



Haviland et al. PRL 62, 2180 (1989) Fisher et al. PRL 64, 587 (1990) Cha et al. PRB 44, 6883 (1991) Liu et al. PRL 67, 2068 (1991) Fazio-Zappalà PRB(R) 8883 (1996) Damle-Sachdev PRB 56, 8714 (1997) Šmakov-Sørensen PRL 95, 180603 (2005) Witczak-Krempa et al. PRB 86, 245102 (2012) Chen et al. PRL 112, 030402 (2014) Chester et al. JHEP 2020, 142 (2020)

 $\sigma(\omega/T) =$



Universal conductivity: $\Sigma(\tilde{\omega})$ is a dimensionless universal scaling function in 2+1D

$$=\frac{e^2}{h}\Sigma\left(\frac{\hbar\omega}{k_BT}\right)$$

Haviland et al. PRL 62, 2180 (1989) Fisher et al. PRL 64, 587 (1990) Cha et al. PRB 44, 6883 (1991) Liu et al. PRL 67, 2068 (1991) Fazio-Zappalà PRB(R) 8883 (1996) Damle-Sachdev PRB 56, 8714 (1997) Šmakov-Sørensen PRL 95, 180603 (2005) Witczak-Krempa et al. PRB 86, 245102 (2012) Chen et al. PRL 112, 030402 (2014) Chester et al. JHEP 2020, 142 (2020)

Universal conductivity: $\Sigma(\tilde{\omega})$ is a dimensionless universal scaling function in 2+1D

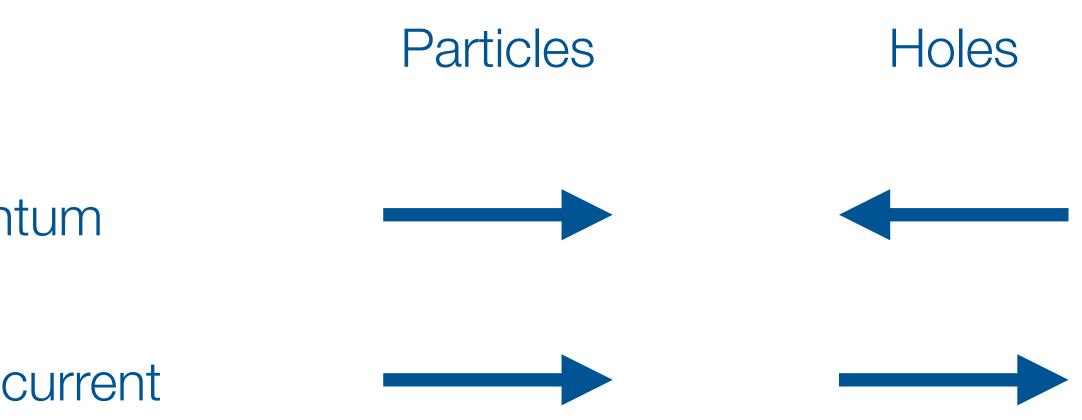
 $\sigma(\omega/T) =$

Ordinary transport: finite conductivity always needs impurity or Umklapp scattering (for momentum relaxation) Quantum critical transport (with particle-hole symmetry): conductivity is finite **without disorder and Umklapp**

Momentum

Electrical current

$$=\frac{e^2}{h}\Sigma\left(\frac{\hbar\omega}{k_BT}\right)$$



Universal conductivity: $\Sigma(\tilde{\omega})$ is a dimensionless universal scaling function in 2+1D

 $\sigma(\omega/T) =$

- theory methods.
- Monte Carlo simulation and conformal bootstrap.
- The DC conductivity $\sigma(0)$ is easier to measure in experiments. •

$$=\frac{e^2}{h}\Sigma\left(\frac{\hbar\omega}{k_BT}\right)$$

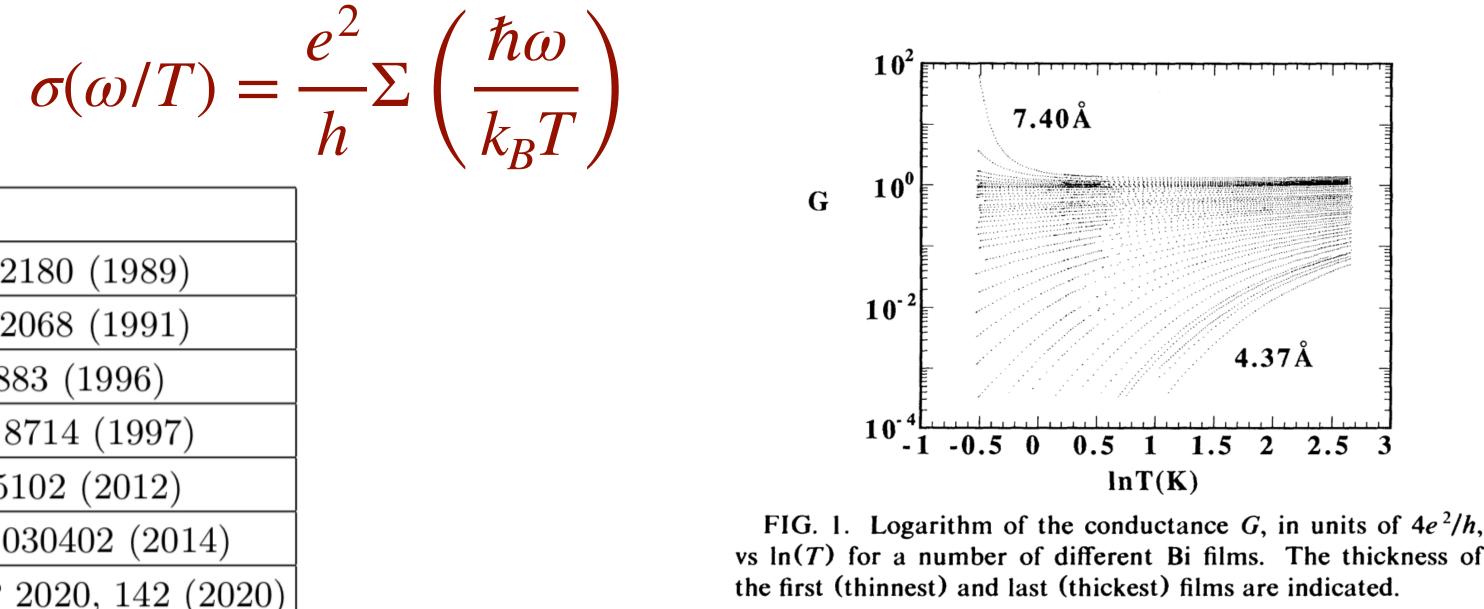
Fully determining the shape of the scaling function $\Sigma(\tilde{\omega})$ is challenging using conventional field-

Under the limits $\hbar\omega \gg k_R T$ and $\hbar\omega \ll k_R T$, people have calculated $\sigma(0)$ and $\sigma(\infty)$ using analytical methods like small- ϵ expansion and large-N expansion, or numerical methods like

Universal conductivity: $\Sigma(\tilde{\omega})$ is a dimensionless universal scaling function in 2+1D

$\Sigma(0)$	$\Sigma(\infty)$	
≈ 1		experiment in PRL $62, 2180$ (1989)
≈ 1		experiment in PRL $67, 2068$ (1991)
	0.315	ϵ -expansion in PRB 8883 (1996)
1.037	0.3927	ϵ -expansion in PRB 56, 8714 (1997)
1.068		large-N in PRB 86, 245102 (2012)
	0.359(4)	Monte Carlo in PRL 112, 030402 (2014)
	0.355155(11)	conformal bootstrap in JHEP 2020, 142 (2020)

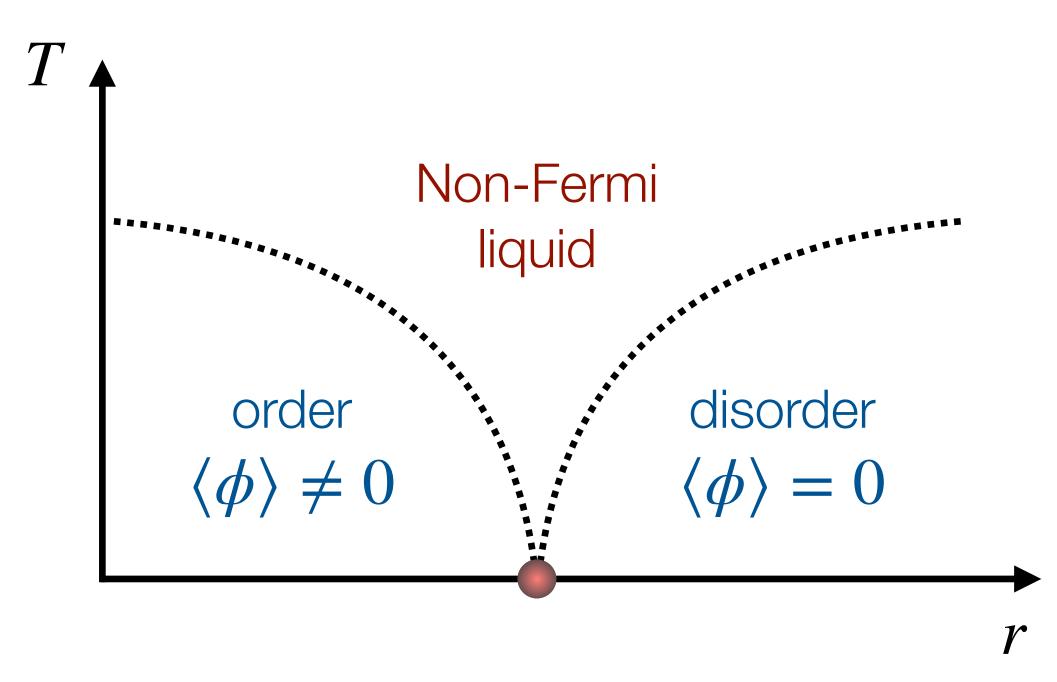
Maybe we can trust $\Sigma(\infty) \approx 0.36$ (conformal bootstrap) and $\Sigma(0) \approx 1$ (experiment).



. Universal resistivity $\rho = \sigma^{-1}$ (two values the same order): $\rho(\infty) \approx 3\rho(0) \approx 3\frac{h}{\sigma^2}$.

Quantum phase transitions in metals

- and conceptually).



Quantum phase transitions involving **fermi-surface** states remain poorly understood (technically

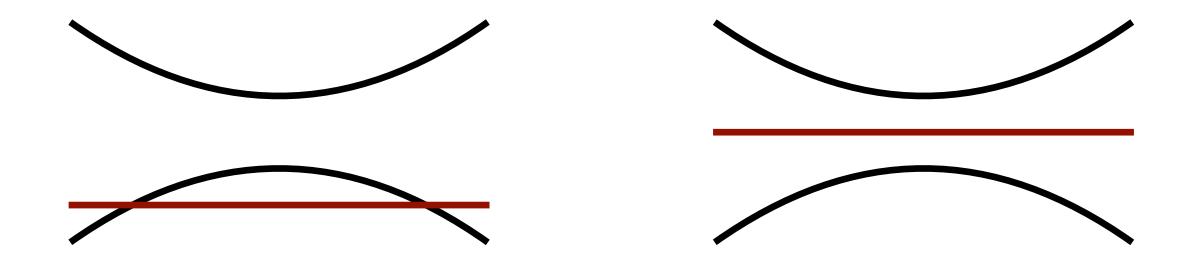
For conventional symmetry-breaking transitions in 2+1D metals, the fermi-surface states strongly renormalized \rightarrow breakdown of Landau Fermi liquid theory (no controlled theory, even today).

Quantum phase transitions in metals

- and conceptually).
- This talk will be about **metal-insulator transition (MIT)** without symmetry breaking. ۲
- The simple scenarios within band theory:

Quantum phase transitions involving **fermi-surface** states remain poorly understood (technically

For conventional symmetry-breaking transitions in 2+1D metals, the fermi-surface states strongly renormalized \rightarrow breakdown of Landau Fermi liquid theory (no controlled theory, even today).



Beyond band theory: (1) disorder-driven MIT; (2) interaction-driven MIT (our focus today)

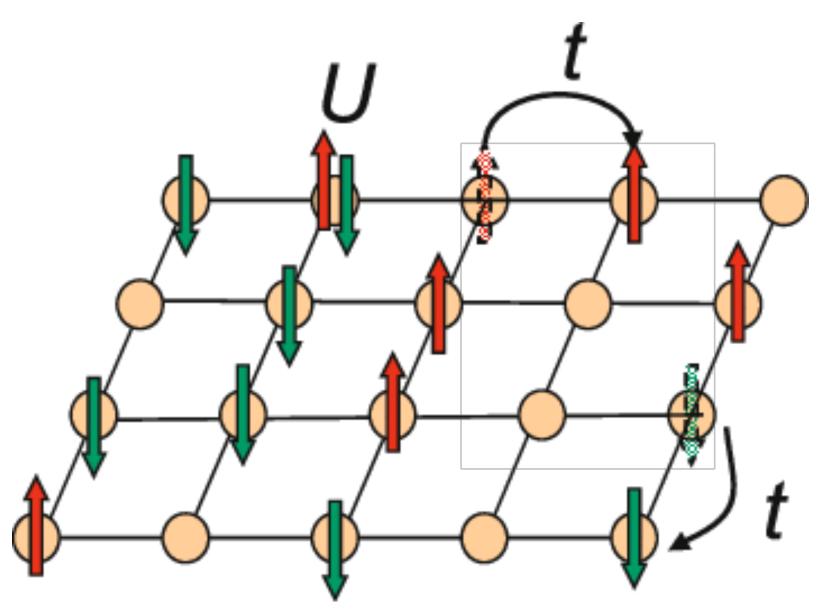
Interaction-driven metal-insulator transition

The one-band Hubbard model at half-filling •

$$H = -\sum_{\langle i,j \rangle} \sum_{\alpha=\uparrow,\downarrow} t_{ij} (c_{i,\alpha}^{\dagger} c_{j,\alpha} + c_{j,\alpha}^{\dagger} c_{i,\alpha}) + U \Big]$$

- There is a competition between the hopping energy t • and the on-site Coulomb repulsion U.
- (1) metal when $t/U \gg 1$; (2) insulator when $t/U \ll 1$ •
- The value of t/U (i.e., the bandwidth) is tunable in • experiments by changing external parameters.

 $\sum n_{j,\uparrow} n_{j,\downarrow}$



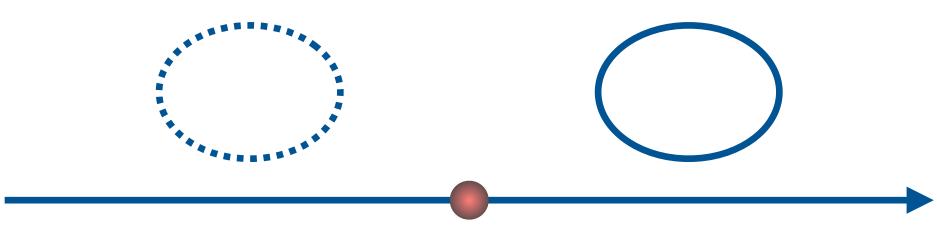
(figure credit: Yamada et al. 2018)

Interaction-driven metal-insulator transition

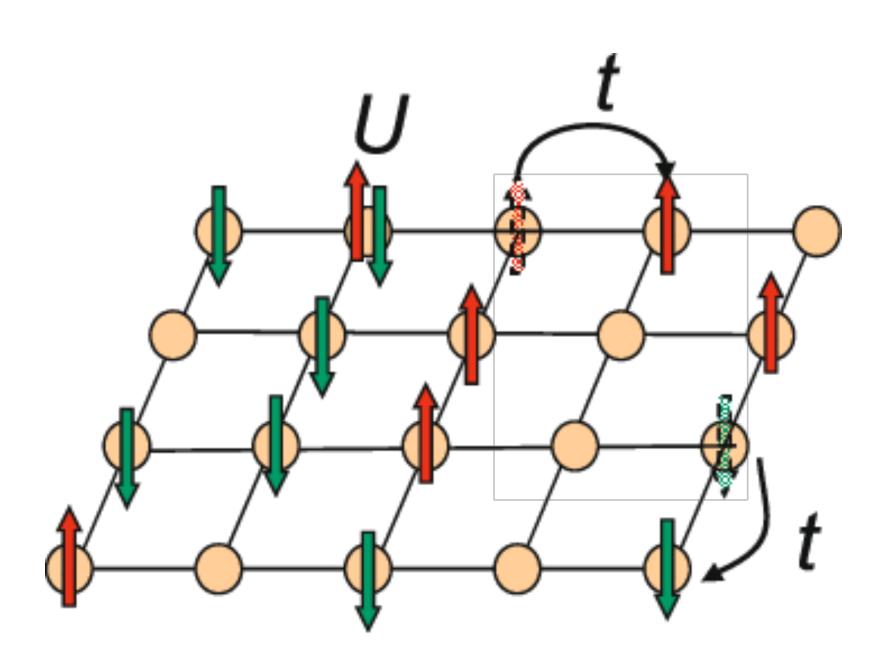
The one-band Hubbard model at half-filling •

$$H = -\sum_{\langle i,j \rangle} \sum_{\alpha=\uparrow,\downarrow} t_{ij} (c_{i,\alpha}^{\dagger} c_{j,\alpha} + c_{j,\alpha}^{\dagger} c_{i,\alpha}) + U$$

- Continuous metal-insulator transition?
- An idea (Senthil 2008): to make the electron Fermi • surface disappear abruptly in a continuous fashion, a neutral Fermi surface remains on the insulator side.



 $\sum n_{j,\uparrow} n_{j,\downarrow}$

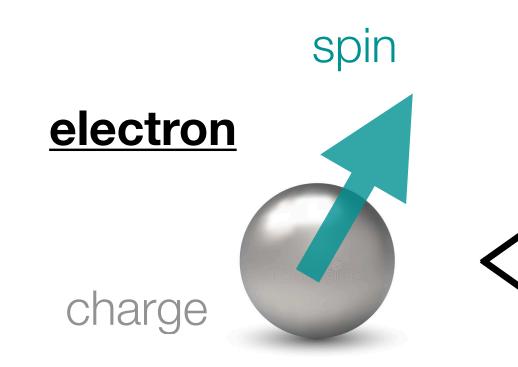


(figure credit: Yamada et al. 2018)

bandwidth

Continuous metal-insulator transition

Interaction-driven transition at half-filling

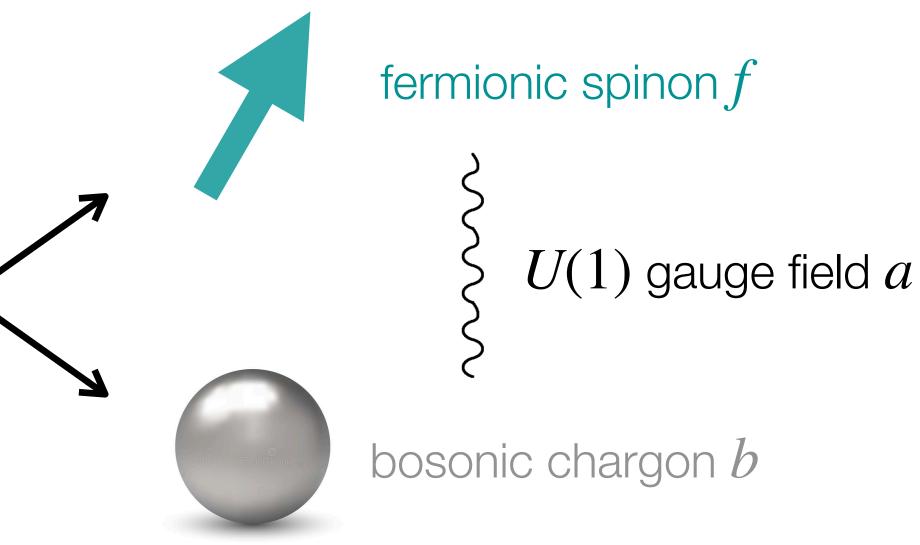


b (dynamically decoupled from f, a): 3D XY transition

Mott insulator (spinon FS)

 $\langle b \rangle = 0$

Lee-Lee, PRL (2005), Senthil, PRB (2008), etc



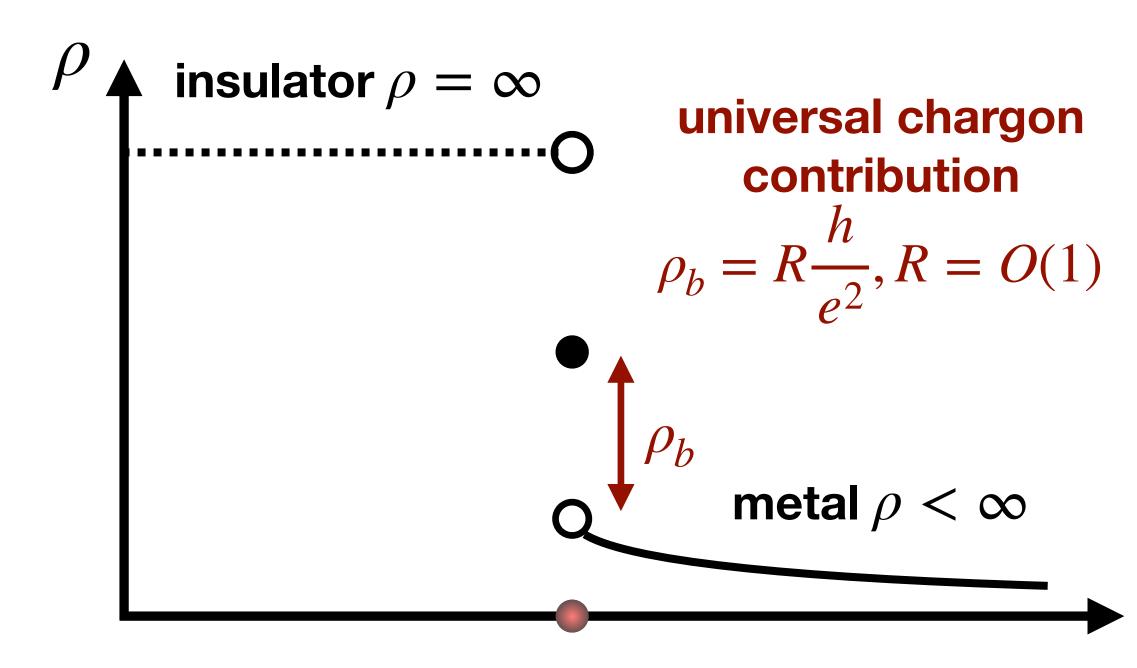
 $a ext{ is Higgsed, } c \sim \langle b \rangle f$ (electron FS)

 $\langle b \rangle \neq 0$

bandwidth

Electrical resistivity at continuous metal-insulator transition

. Critical point:
$$\rho_b = R \frac{h}{e^2} \Rightarrow \rho = \rho_f + A$$



bandwidth

Lee-Lee, PRL (2005), Senthil, PRB (2008), etc

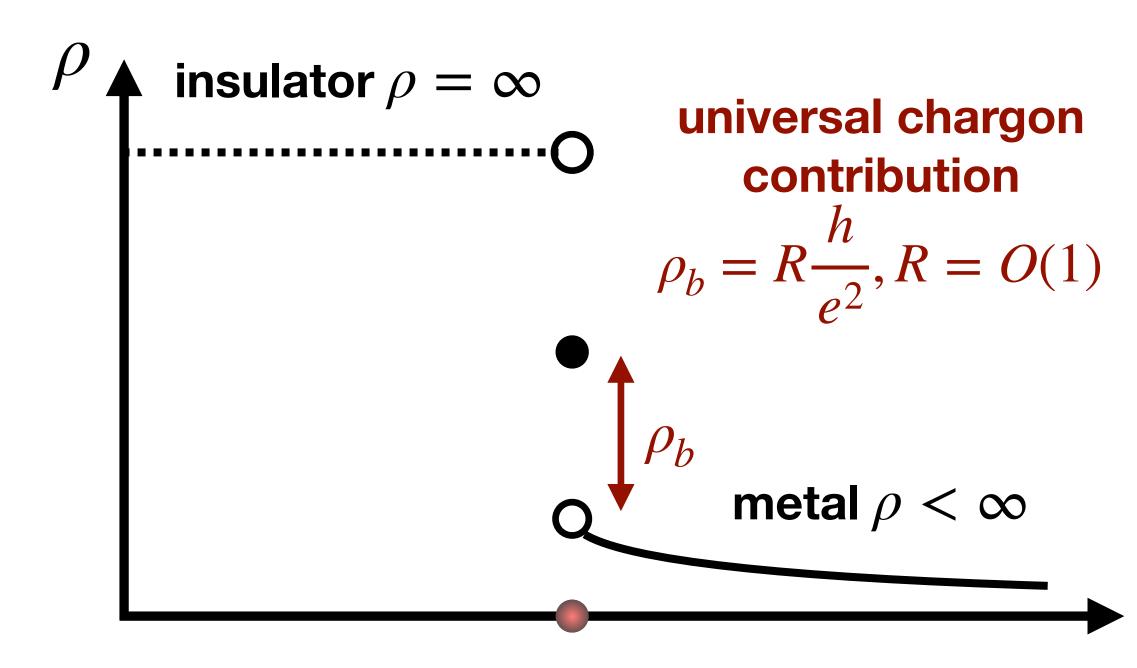
loffe-Larkin rule $\rho = \rho_f + \rho_b$; Insulator $\rho_b = \infty \Rightarrow \rho = \infty$; Metal $\rho_b = 0 \Rightarrow \rho = \rho_f$.

 $R - \frac{h}{2}$, where *R* is of the order 1 < R < 10.

Electrical resistivity at continuous metal-insulator transition

loffe-Larkin rule $\rho = \rho_f + \rho_b$; Insulator ρ_b

. Critical point:
$$\rho_b = R \frac{h}{e^2} \Rightarrow \rho = \rho_f + R \frac{h}{e^2}$$
, where *R* is of the order $1 < R < 10$.



bandwidth

Lee-Lee, PRL (2005), Senthil, PRB (2008), etc.

$$=\infty \Rightarrow \rho = \infty$$
; Metal $\rho_b = 0 \Rightarrow \rho = \rho_f$.

Universal chargon contribution $\rho_b(\omega/T)$ (large-N, MC results in Witczak-Krempa et al. PRB (2012)): $\rho_b(\infty) = 3.51 \frac{h}{e^2} \text{ (Wilson-Fisher CFT)}$ $\rho_b(0) = 7.93 \frac{h}{e^2} \text{ (WF CFT + damped gauge)}$ ho_b is NOT significantly larger than $-\frac{1}{e^2}$

Electrical resistivity at continuous metal-insulator transition

loffe-Larkin rule $\rho = \rho_f + \rho_b$; Insulator ρ_b

. Critical point:
$$\rho_b = R \frac{h}{e^2} \Rightarrow \rho = \rho_f + R \frac{h}{e^2}$$
, where *R* is of the order $1 < R < 10$.

- ρ_f is from weak disorder scattering, and below the Mott-loffe-Regel limit $\sim \frac{h}{\rho^2}$.

$$=\infty \Rightarrow
ho =\infty$$
; Metal $ho_b=0 \Rightarrow
ho =
ho_f$

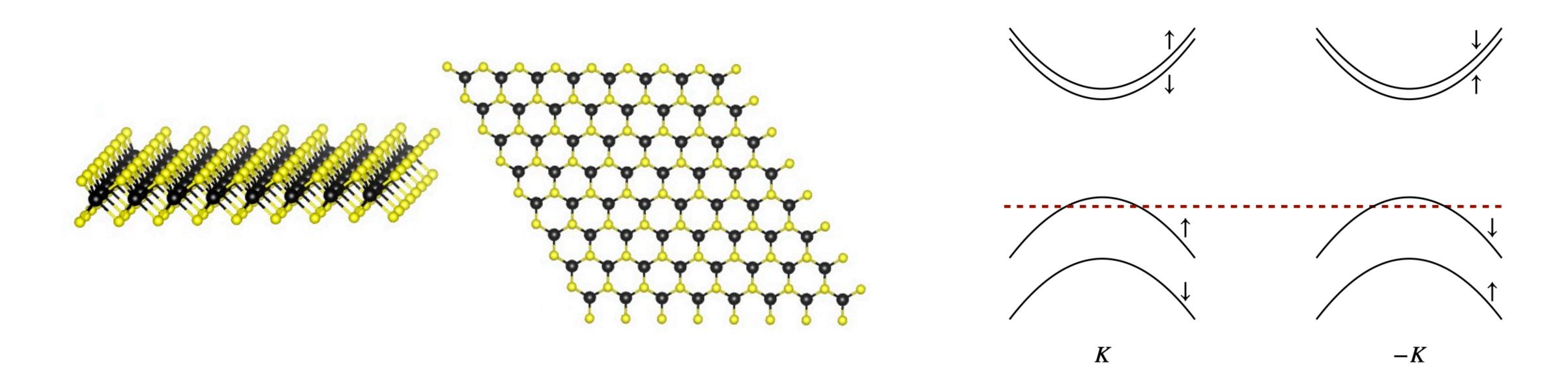
In total, the critical resistivity $\rho = \rho_f + \rho_b$ is NOT significantly larger than $\frac{h}{r^2}$.

Content

- I. Brief introduction to quantum phases and phase transitions.
- II. Experimental motivations: a potentially interaction-driven continuous metal-insulator transition in transition-metal dichalcogenide (TMD) Moiré heterobilayer MoTe₂/WSe₂, which has anomalously large critical resistivity.
- III. Theoretical proposal for the interaction-driven continuous metal-insulator transition with charge fractionalization.

Transition metal dichalcogenides (TMDs)

- semiconductors with a direct band gap
- •

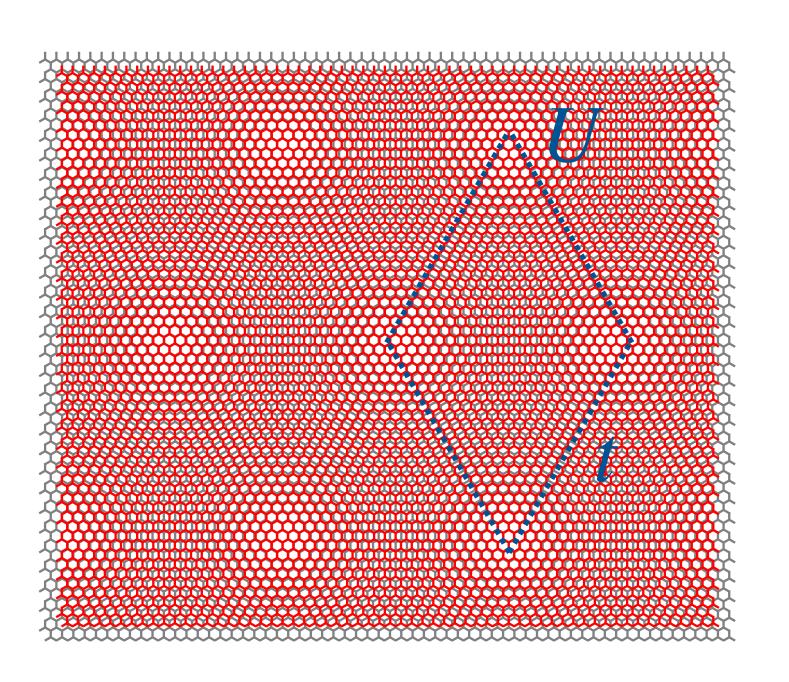


The hexagonal TMD monolayers (MoS₂, WS₂, MoSe₂, WSe₂, MoTe₂) are two-dimensional

The strong spin-orbit coupling in TMD monolayers leads to a spin-orbit splitting of hundreds of meV in the valence band and a few meV in the conduction band (spin-valley locking)

Hubbard physics in TMD heterobilayer MoTe₂/WSe₂

MoTe₂/WSe₂ bilayers (0-degree) · TMD Moiré systems: $t \sim 1-10$ meV $\ll U \sim 50-100$ meV.



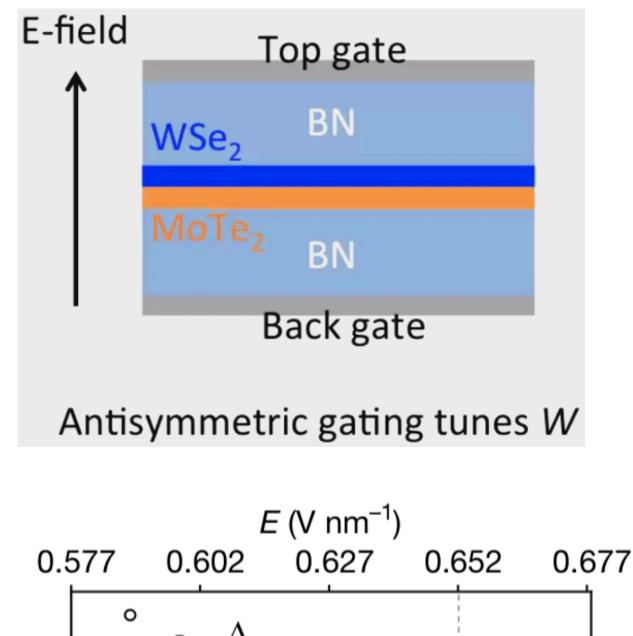
7% lattice mismatch \downarrow Moiré superlattice $a_M \sim 5 \text{ nm}$

- Topologically trivial bands \Rightarrow No Wannier obstruction
- Spin-valley locking \Rightarrow two degrees per site
- H = -
- The pseudo-spin degeneracy by time-reversal symmetry.
- But pseudo-spin SU(2) is not guaranteed by microscopic symmetries (unlike the standard Hubbard model).

Shan, Mak et al. Nature 597, 350-354 (2021)

$$\sum_{\langle i,j\rangle} \sum_{\alpha=\uparrow,\downarrow} t_{ij} (c_{i,\alpha}^{\dagger} c_{j,\alpha} + c_{j,\alpha}^{\dagger} c_{i,\alpha}) + U \sum_{j} n_{j,\uparrow} n_{j,\downarrow}$$

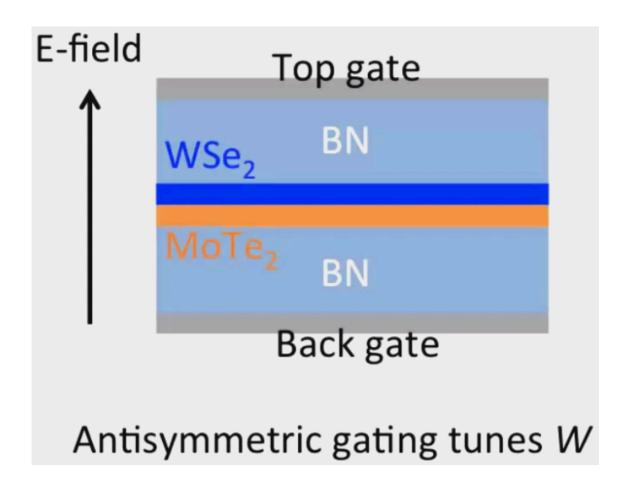
Continues metal-insulator transition in heterobilayer MoTe₂/WSe₂



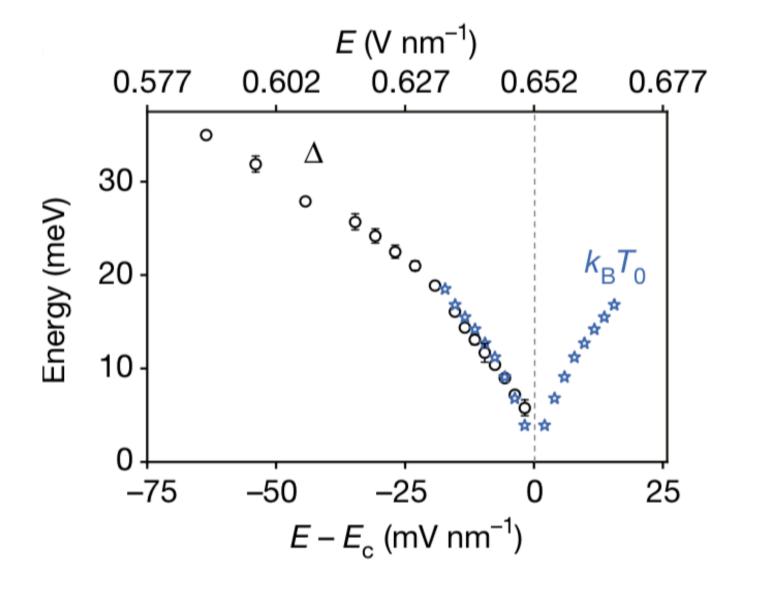
30 Energy (meV) $k_{\rm B}T_0$ 20 -10 -°∂ ★ ★ -75 -50 -25 25 $E - E_{\rm c} \, ({\rm mV \, nm^{-1}})$

- bandwidth tuned by the interlayer displacement field \Rightarrow ulletcontinuous metal-insulator transition
- From the insulator side, the charge gap vanishes • continuously.
- From the metal side, the electron effective mass (from • Kadowaki–Woods scaling in resistivity measurements) diverges near the critical point.
- No sign of long-range magnetic ordering (down to 5% of Curie-Weiss temperature), and magnetic susceptibility shows a smooth dependence on the displacement field across the transition.

Continues metal-insulator transition in heterobilayer MoTe₂/WSe₂

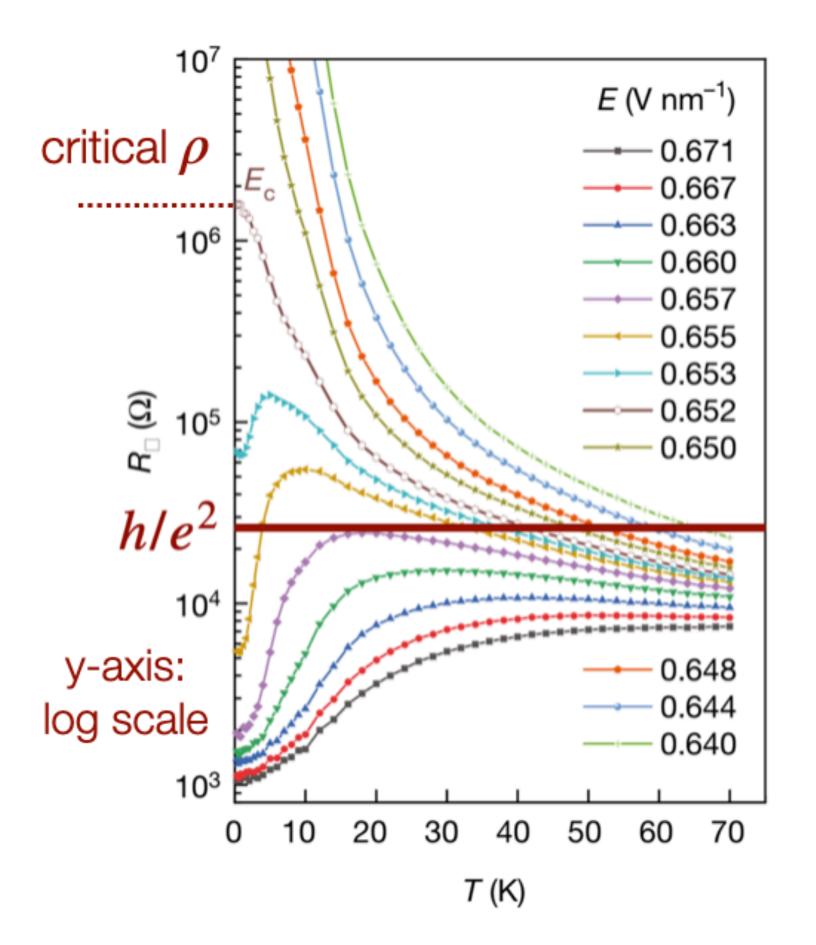


- bandwidth tuned by the interlayer displacement field \Rightarrow ulletcontinuous metal-insulator transition
- The conclusion of the experimental paper: it is potentially • an interaction-driven transition, and disorder only plays a "perturbative role".
- Half-band filling density (two orders) \gg disorder density •
 - A different perspective: disorder plays an important role in another theory in Kim et al. arXiv:2204.10865



Continues metal-insulator transition in heterobilayer $MoTe_2/WSe_2$

Continuous MIT at half-filling:



If this is an interaction-driven continuous MIT, the critical ρ is much larger than the expected value within the current theoretical understanding.

Shan, Mak et al. Nature 597, 350–354 (2021)

Content

- I. Brief introduction to quantum phases and phase transitions.
- I. Experimental motivations: a potentially interaction-driven continuous metal-insulator transition in transition-metal dichalcogenide (TMD) Moiré heterobilayer MoTe₂/WSe₂, which has anomalously large critical resistivity.
- III. Theoretical proposal for the interaction-driven continuous metal-insulator transition with charge fractionalization.

Metal-insulator transition (half-filling) with large critical resistivity

"Standard construction" in Senthil 2008 ullet

•
$$c_{\mathbf{r},\alpha} = b_{\mathbf{r}} f_{\mathbf{r},\alpha}, \ \alpha = \uparrow \downarrow$$

- One emergent U(1) gauge field a •
- f: spinon fermi surface •
- b: 3D XY transition •

Y. Xu, XW, Z.-X. Luo, M. Ye, C.-M. Jian, and C. Xu, (arXiv:2106.14910) PRX 12, 021067 (2022)

- New construction: $c_{r,\alpha} = b_{\alpha,r} f_{r,\alpha}, \alpha = \uparrow \downarrow$
- (time-reversal symmetry, no SU(2) rotation) •
- Two emergent U(1) gauge fields $a_{\uparrow}, a_{\downarrow}$
- f: spinon fermi surface
- $b_{\uparrow}, b_{\downarrow}$: 3D XY transitions simultaneously (by timereversal symmetry)
- $\cdot \Rightarrow$ charge fractionalization \Rightarrow Large electrical resistivity at critical point

Metal-insulator transition (half-filling) with large critical resistivity

"Standard construction" in Senthil 2008 ullet

•
$$c_{\mathbf{r},\alpha} = b_{\mathbf{r}} f_{\mathbf{r},\alpha}, \ \alpha = \uparrow \downarrow$$

- Electron c at half-filling •
- \Rightarrow b at integer filling •
- the Mott insulator of b trivially gapped •

Y. Xu, XW, Z.-X. Luo, M. Ye, C.-M. Jian, and C. Xu, (arXiv:2106.14910) PRX 12, 021067 (2022)

- New construction: $c_{r,\alpha} = b_{\alpha,r} f_{r,\alpha}$, $\alpha = \uparrow \downarrow$
- Electron c at half-filling •
- \Rightarrow b_{\uparrow} at half-filling, and b_{\downarrow} at half-filling
- Lieb-Schultz-Mattis (LSM) theorem \Rightarrow the Mott • insulator of $b_{\uparrow}, b_{\downarrow}$ can NOT be trivially gapped.
- (1) topological order;
- (2) density-wave state (that spontaneously breaks translation symmetry).

Critical theory of b_{\uparrow} (or b_{\downarrow}) at fractional filling: dual vortex theory

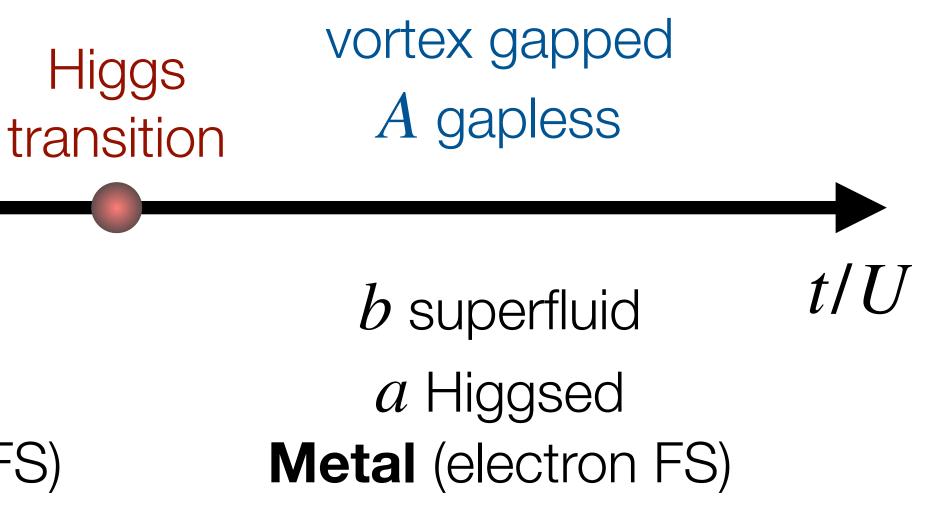
Dual theory: vortex of b + dynamical U(1) gauge field A (dual to Goldstone of superfluid of b)

vortex condensed A Higgsed

b insulator a gapless **Mott insulator** (spinon FS)

- •
- •

Y. Xu, XW, Z.-X. Luo, M. Ye, C.-M. Jian, and C. Xu, (arXiv:2106.14910) PRX 12, 021067 (2022)



Case 1: the condensation of N-vortex (bound state) at k = 0 gives \mathbb{Z}_N topological order.

Case 2: the condensation of vortex at finite momentum $k \neq 0$ breaks translation symmetry.

Case 1: \mathbb{Z}_N topological order

The critical theory of N-vortex (bound state) condensation for b_{\uparrow} (or b_{\downarrow}) •

$$\mathscr{L} = |(\partial_{\mu} - iNA_{\mu})\psi|^{2} + r|\psi|^{2} + u|\psi|^{4} + \frac{i}{2\pi}A \wedge d(a + eA_{ext}) + \dots$$

•

Y. Xu, XW, Z.-X. Luo, M. Ye, C.-M. Jian, and C. Xu, (arXiv:2106.14910) PRX 12, 021067 (2022)

The chargon sector (3D XY* universality) is dynamically decoupled from the spinon fermi-surface.

Case 1: \mathbb{Z}_N topological order

The critical theory of N-vortex (bound state) condensation for b_{\uparrow} (or b_{\downarrow}) •

.
$$\mathscr{L} = |(\partial_{\mu} - iNA_{\mu})\psi|^{2} + r|\psi|^{2} + u|\psi|^{4} + \frac{i}{2\pi}A \wedge d(a + eA_{ext}) + \dots$$

- •
- The total species of $\tilde{\psi}$ is 2 (b_{\uparrow} and b_{\downarrow}) \Rightarrow the universal chargon contribution $\rho_{b} = \tilde{\rho}/2$.
- Large critical resistivity $\rho = \rho_f + \rho_b$ when

Y. Xu, XW, Z.-X. Luo, M. Ye, C.-M. Jian, and C. Xu, (arXiv:2106.14910) PRX 12, 021067 (2022)

The chargon sector (3D XY* universality) is dynamically decoupled from the spinon fermi-surface.

Charge fractionalization (both critical point and Mott insulator): the charge carrier is the anyon $ilde{\psi}$ of the \mathbb{Z}_N topological order, with $e_* = e/N$. We find $\tilde{\psi}$ has universal DC resistivity $\tilde{\rho} \approx 7.93 h/e_*^2$.

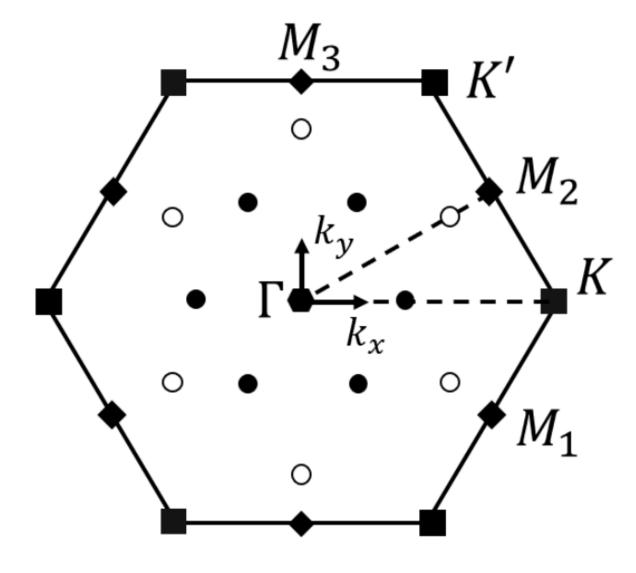
$$\mathbf{re} \ \rho_b \approx 3.96 N^2 \frac{h}{e^2} \sim N^2 \frac{h}{e^2} \ \text{(although } \rho_f < \frac{h}{e^2} \text{)}.$$

Case 2: density-wave state

•

The vortex band structure: N minima in Brillo

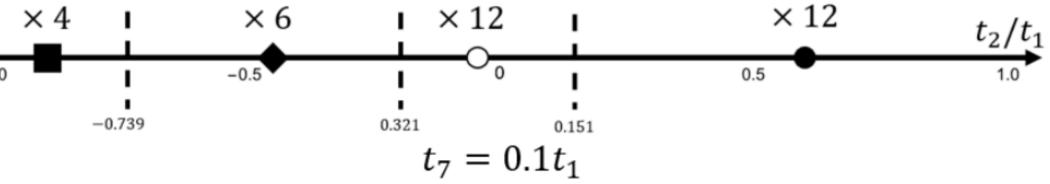
$$\mathscr{L} = \sum_{I=1}^{N} \left(\left| (\partial_{\mu} - iA_{\mu})\psi_{I} \right|^{2} + r \left| \psi_{I} \right|^{2} \right) + u \left(\sum_{I=1}^{N} |\psi_{I}|^{2} \right)^{2} + \frac{i}{2\pi} A \wedge d(a + eA_{ext}) + \dots$$



-1.0

Y. Xu, XW, Z.-X. Luo, M. Ye, C.-M. Jian, and C. Xu, (arXiv:2106.14910) PRX 12, 021067 (2022)

puin zone ~
$$\sum_{I=1}^{N} \psi_{I} e^{i Q_{I} \cdot r}$$
, where low-energy fields ψ_{I}



Case 2: density-wave state

The vortex band structure: N minima in Brillo

$$\mathscr{L} = \sum_{I=1}^{N} \left(\left| \left(\partial_{\mu} - iA_{\mu} \right) \psi_{I} \right|^{2} + r \left| \psi_{I} \right|^{2} \right) + u \left(\sum_{I=1}^{N} |\psi_{I}|^{2} \right)^{2} + \frac{i}{2\pi} A \wedge d(a + eA_{ext}) + \dots$$

- •

Y. Xu, XW, Z.-X. Luo, M. Ye, C.-M. Jian, and C. Xu, (arXiv:2106.14910) PRX 12, 021067 (2022)

win zone ~
$$\sum_{I=1}^{N} \psi_{I} e^{i Q_{I} \cdot r}$$
, where low-energy fields ψ_{I}

Charge fractionalization at critical point (Landau-forbidden transition in chargon sector): the charge carrier is the vortex $\tilde{\psi}_I$ of each ψ_I with $e_* = e/N$. The total species of $\tilde{\psi}$ is 2N (b_{\uparrow} and b_{\downarrow}). Generalized loffe-Larkin rule (for $\sum_{I=1}^{N} e_I = e$): $\rho_b = \frac{h}{e^2} \frac{1}{2} \sum_{I=1}^{N} \tilde{R}^I$, where $\tilde{R}^I = \langle J^I_{\omega} J^I_{-\omega} \rangle / \omega$.

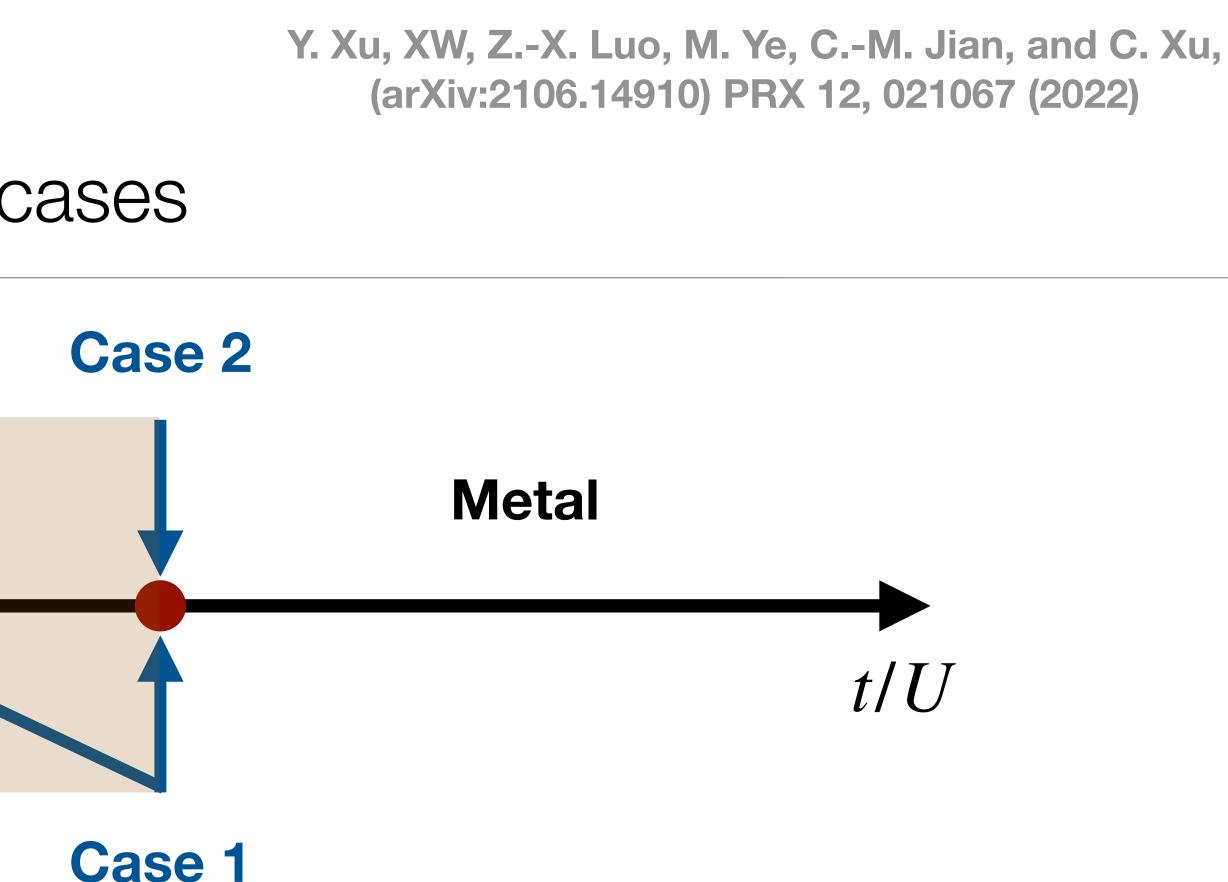
Large critical resistivity $\rho = \rho_f + \rho_b$ where $\rho_b \approx (3.62 + 1.68(N-1))\frac{h}{\rho^2} \sim N\frac{h}{\rho^2}$.

Experimental distinctions of two cases

Charge fractionalization:

Mott insulator

- \bullet
- lattice translation symmetry.

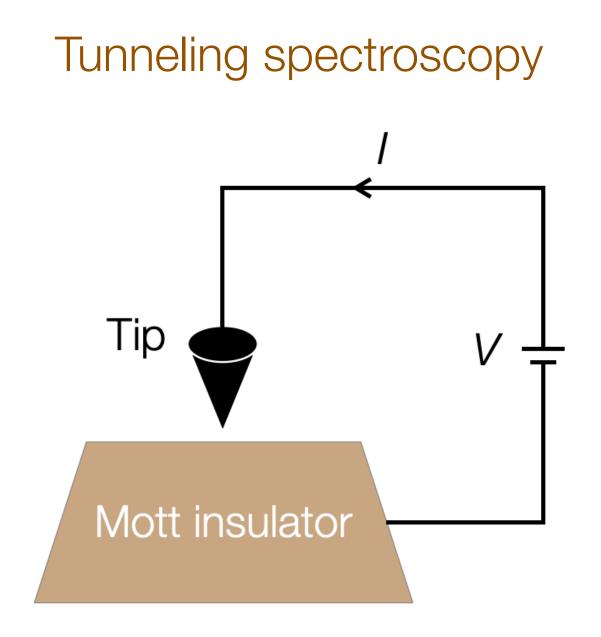


Case 1: in topological order (Mott insulator), the charge carriers are still deconfined at T = 0.

Case 2: in density wave (Mott insulator), the U(1) gauge field that couples to the fractionalized charge carrier will confine even at T = 0, due to the condensation of monopole which carries

Other predicted physical properties

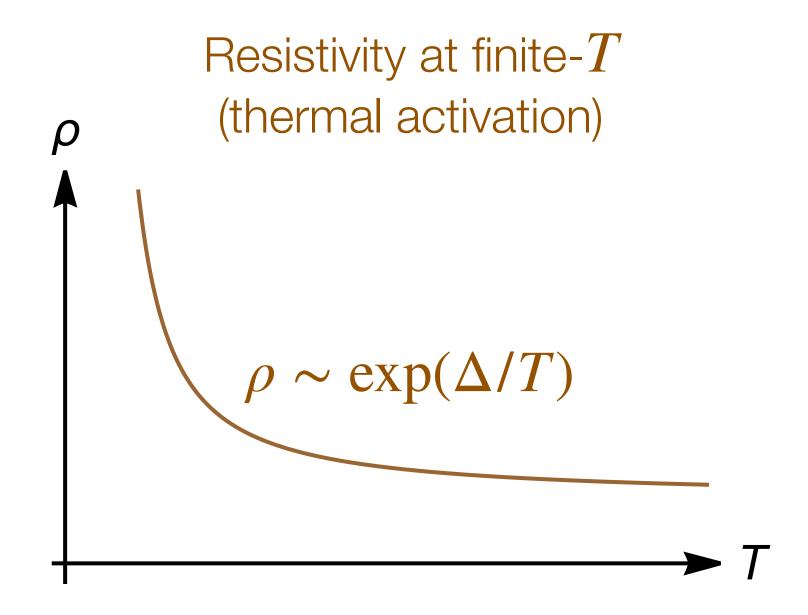
•



•

Y. Xu, XW, Z.-X. Luo, M. Ye, C.-M. Jian, and C. Xu, (arXiv:2106.14910) PRX 12, 021067 (2022)

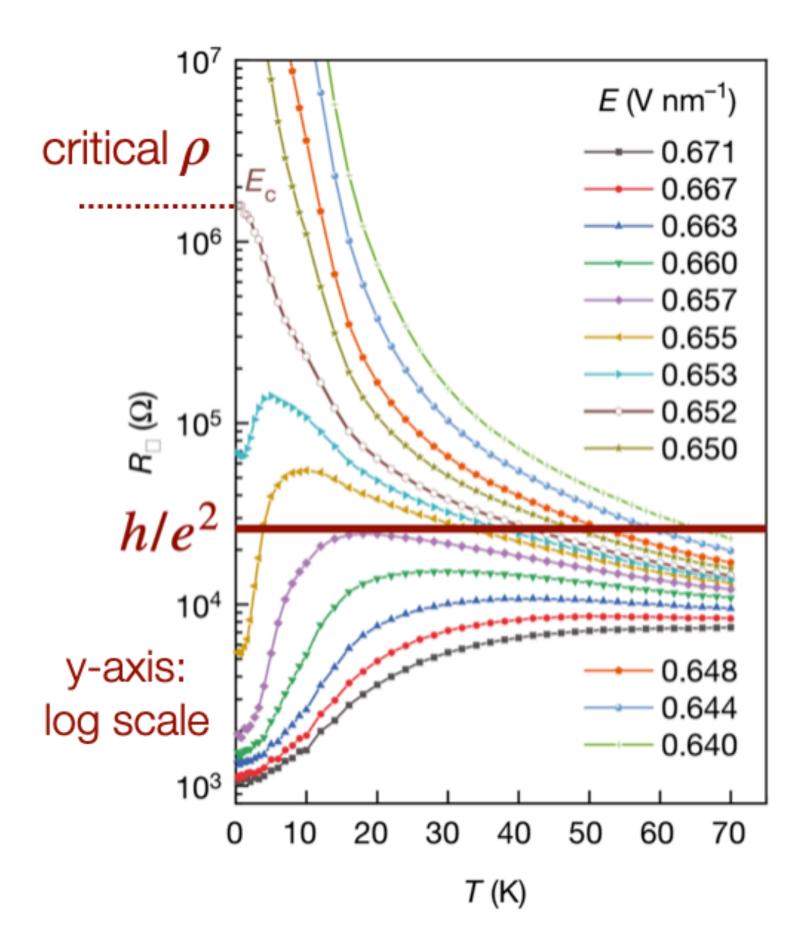
In Mott insulator, if there are deconfined fractional charges, tunneling gap $\approx N$ transport gap



In Metal phase, the electron operator is $c \sim \langle b \rangle f \sim \langle \tilde{\psi}_1 \dots \tilde{\psi}_N \rangle f$. The quasi-particle weight Z will vanish approaching the critical point with scaling $\sqrt{Z} \sim \langle \tilde{\psi}_1 \dots \tilde{\psi}_N \rangle \sim |g - g_c|^{\beta_N}$, where bandwidth $g \sim t/U$, and critical exponent β_N increases with N (much larger than $\beta_1 = 0.33$ in Senthil 2008).

Big critical resistivity in transition metal dichalcogenides

Continuous MIT at half-filling:

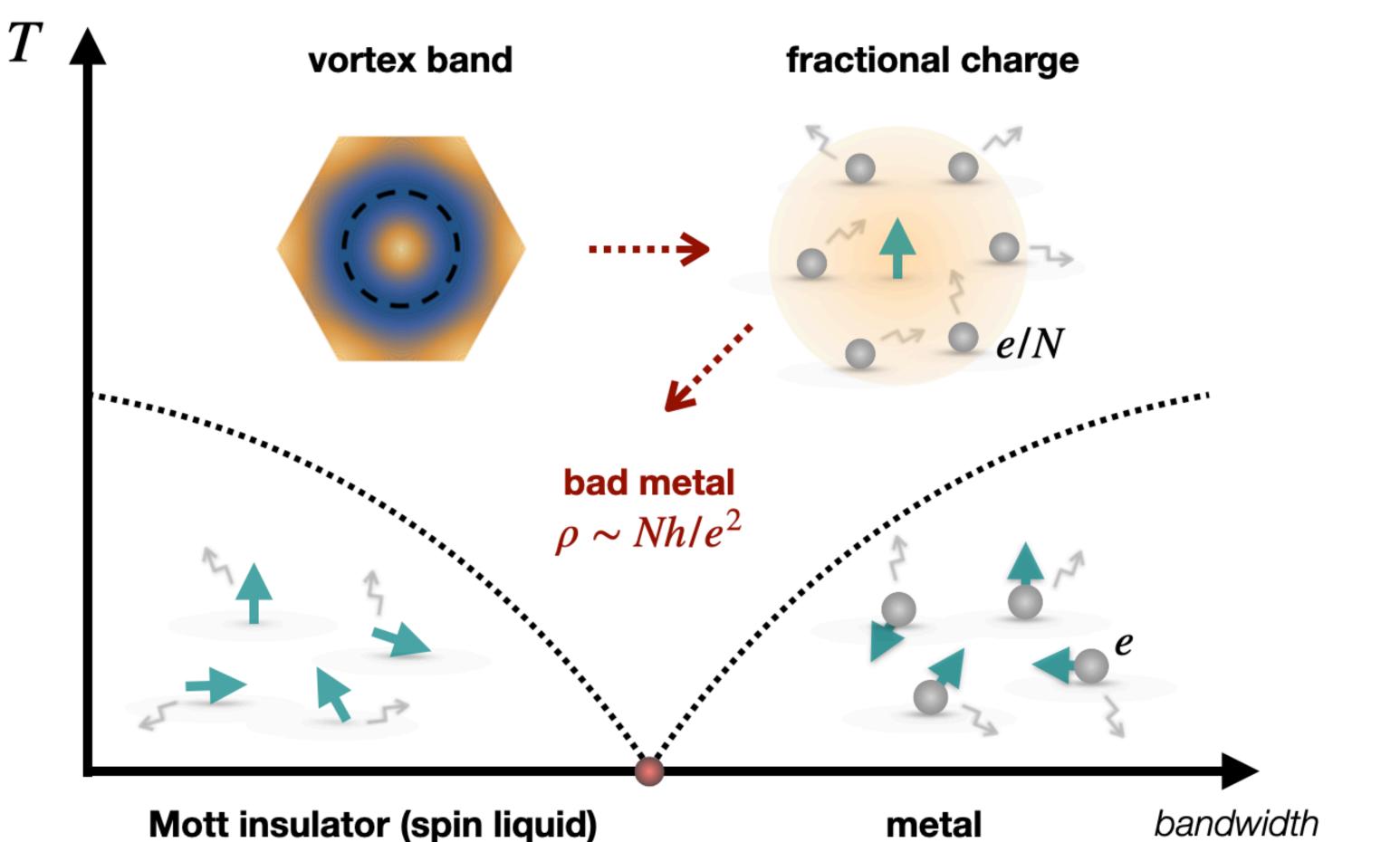


Shan, Mak et al. Nature 597, 350–354 (2021)

Our construction (arXiv:2106.14910) at halffilling (and other fractional fillings): the observed big critical resistivity is potentially explained by **charge fractionalization** at the critical point (two cases: topological order/density wave).

Construction of metal to Wigner crystal transition at 1/6-filling by Musser-Senthil-Chowdhury (arXiv:2111.09894) also involves charge fractionalization at critical point.

Summary



Mott insulator (spin liquid)

Y. Xu, XW, Z.-X. Luo, M. Ye, C.-M. Jian, and C. Xu, (arXiv:2106.14910) PRX 12, 021067 (2022)

