Thermal Tensor Network Approach for Quantum Many-Body systems

Bin-Bin Chen Oct. 19, 2022

➢ Outline

1. Finite-T tensor network methods

- 1.1 Tensor network basis
- 1.2 Series-expansion thermal tensor network
- 1.3 Exponential tensor renormalization group
- 1.4 Differentiable tensor renormalization group

2. Application 1

- 2.1 Square-lattice Hubbard model
- 2.2 Triangular-lattice Hubbard model
- 2.3 Magic-angle twisted bilayer graphene model

3. Application 2

- 3.1 Quantum entanglement and disorder operator
- 3.2 topological disorder operator

> 1.1 Motivation

□ Strong Correlated systems:

- High-T superconductivity in cuprate
- Quantum spin liquid
- Magic-angle twisted bilayer graphene

"Exponential wall"

Quantum Monte Carlo (QMC)

Negative sign problem

Tensor Network (TN)

capture the entanglement structure

"Wheat and chessboard" problem

Basic terminology

Manybody wavefunction

of parameters: d^N Exponential wall!

- Typical Tensor Network
- ✓ Matrix Product State (MPS)

✓ Projected Entangled-Pair State (PEPS)

 $\sim N \times (dD^4)$

Remarkable fact: For Hamiltonians with local interactions, the ground state entanglement entropy is governed by an "area law" (Eisert2010).

E.g., for 2D gapped systems, $~S_{E} \sim L$

E.g., for 1D gapped systems, $~S_E \sim {
m const.}$

E.g., for 1D gapless systems, $~S_E \sim \ln L$

For a bond with dimension D, entanglement entropy $S_E = -\text{Tr}
ho_A \ln
ho_A < \ln D$

Then, for 2D gapped systems,

for 1D gapped systems, $D > e^{S_E} \sim {\rm const.}$ (independent of system size)

for 1D gapless systems, $D > e^{S_E} \sim L^{lpha}$ (polynomial resources)

Density operator

of parameters: d^{2N} Exponential wall!

- Typical Tensor Network
- ✓ Matrix Product Operator (MPO)

 $\sim N \times (d^2 D^2)$

W. Li, et al. 2011; Dong, et al. 2017

✓ Projected Entangled-Pair Operator (PEPO)

Czarnik, et al. 2017

1.1 Path-Integral Thermal Tensor Network

Partition function for Hamiltonian with local interactions $H = \sum_{i} h_{i,i+1} = \sum_{i} S_i \cdot S_{i+1}$

$$Z = \operatorname{Tr} e^{-\beta H} = \operatorname{Tr} e^{-\beta \sum_{i} h_{i,i+1}}$$

$$= \sum_{\vec{\sigma}^1} \langle \vec{\sigma}^1 | e^{-\beta \sum_i h_{i,i+1}} | \vec{\sigma}^1 \rangle \qquad | \vec{\sigma} \rangle := | \sigma_1, \sigma_2, \cdots, \sigma_N \rangle$$

$$=\sum_{\vec{\sigma}^1,\vec{\sigma}^2,\cdots,\vec{\sigma}^M} \langle \vec{\sigma}^1 | e^{-\frac{\beta}{M}\sum_i h_{i,i+1}} | \vec{\sigma}^M \rangle \cdots \langle \vec{\sigma}^3 | e^{-\frac{\beta}{M}\sum_i h_{i,i+1}} | \vec{\sigma}^2 \rangle \langle \vec{\sigma}^2 | e^{-\frac{\beta}{M}\sum_i h_{i,i+1}} | \vec{\sigma}^1 \rangle$$

$$= \sum_{\vec{\sigma}^j} \prod_{j=1}^M \langle \vec{\sigma}^{j+1} | e^{-\tau \sum_i h_{i,i+1}} | \vec{\sigma}^j \rangle$$

$$=\sum_{\{\sigma_{i}^{j}\}}\prod_{i=1}^{N}\prod_{j=1}^{M}\langle\sigma_{i}^{j+1}\sigma_{i+1}^{j+1}|e^{-\tau h_{i,i+1}}|\sigma_{i}^{j}\sigma_{i+1}^{j}\rangle+O(\tau^{2})$$

> 1.1 Path-Integral Thermal Tensor Network

Trotter

$$Z = Tr(e^{-\beta H})$$

$$Z \approx \sum_{\{\sigma_i^j\}} \prod_{i=1}^N \prod_{j=1}^M \langle \sigma_i^{j+1} \sigma_{i+1}^{j+1} | e^{-\tau h_{i,i+1}} | \sigma_i^j \sigma_{i+1}^j \rangle$$

1+1D Tensor Network

β

au

Efficient contraction

Wang and Xiang, 1997

Li, et al. 2011

Dong, et al. 2017

Series-Expansion Thermal Tensor Network (SETTN)

BC, Yun-Jing Liu, Ziyu Chen, Wei Li, PRB(R) 95, 161104

1.2 Basic Idea of SETTN

Taylor Expansion of Partition Function:

$$Z(\beta) = \operatorname{Tr}(e^{-\beta H}) \simeq \sum_{n=0}^{N_c} \frac{(-\beta)^n}{n!} \operatorname{Tr}(H^n)$$

□ Main Procedure:

1.2 Basic Idea of SETTN

Taylor Expansion of Partition Function:

$$Z(\beta) = \operatorname{Tr}(e^{-\beta H}) \simeq \sum_{n=0}^{N_c} \frac{(-\beta)^n}{n!} \operatorname{Tr}(H^n)$$

□ MPO of Hamiltonian: (e.g Heisenberg chain)

(a) $H = - \Phi - \Phi$

(b) $Z = \omega_0 Tr$

+ $\omega_n Tr$

+ $\omega_1 Tr \left[- \phi \right]$

 $\hat{P} \in \left\{ \hat{I}, \hat{S}_x, \hat{S}_y, \hat{S}_z \right\}$

2**T**

$+S^x S^x II + S^y S^y II + S^z S^z II$

 $IIS^{x}S^{x} + IIS^{y}S^{y} + IIS^{z}S^{z}$ $= +IS^{x}S^{x}I + IS^{y}S^{y}I + IS^{z}S^{z}I$

$$\begin{bmatrix} I & S^{x} & S^{y} & S^{z} & 0 \end{bmatrix} \begin{bmatrix} I & S^{x} & S^{y} & S^{z} & 0 \\ 0 & 0 & 0 & 0 & S^{x} \\ 0 & 0 & 0 & 0 & S^{y} \\ 0 & 0 & 0 & 0 & S^{z} \\ 0 & 0 & 0 & 0 & I \end{bmatrix} \begin{bmatrix} I & S^{x} & S^{y} & S^{z} & 0 \\ 0 & 0 & 0 & 0 & S^{y} \\ 0 & 0 & 0 & 0 & I \end{bmatrix} \begin{bmatrix} I & S^{x} & S^{y} & S^{z} & 0 \\ 0 & 0 & 0 & 0 & S^{z} \\ 0 & 0 & 0 & 0 & S^{z} \\ 0 & 0 & 0 & 0 & S^{z} \\ 0 & 0 & 0 & 0 & I \end{bmatrix} \begin{bmatrix} S^{x}S^{x} + S^{y}S^{y} + S^{z}S^{z} \\ S^{x}I \\ S^{y}I \\ S^{z}I \\ II \end{bmatrix}$$
$$= \begin{bmatrix} I & S^{x} & S^{y} & S^{z} & 0 \end{bmatrix} \begin{bmatrix} IS^{x}S^{x} + IS^{y}S^{y} + IS^{z}S^{z} + S^{x}S^{x}I + S^{y}S^{y}I + S^{z}S^{z}I \\ S^{x}II \\ S^{y}II \\ S^{y}II \\ S^{z}II \\ II \end{bmatrix}$$

1.2 Basic Idea of SETTN

E.g. N= 4 Heisenberg chain

1.2 Efficient contraction of Hⁿ

 H^n

will have bond dimension

 D^n

Η

 H^2

 H^3

Bond dimension scales exponentially and will quickly become unaffordable.

1.2 Efficient contraction of Hⁿ

Canonical form:

1.2 Expansion cutoff

$$Z(\beta) = \operatorname{Tr}(e^{-\beta H}) \simeq \sum_{n=0}^{N_c} \frac{(-\beta)^n}{n!} \operatorname{Tr}(H^n)$$

For large n, we have $\operatorname{Tr}(H^n) \propto (E_{\ln})^n = (e_{\ln}L)^n$

Partition function is sum of $\kappa(n) = \frac{(-\beta L e_{\ln})^n}{n!} = \frac{(\beta L |e_g|)^n}{n!}$

which is most prominent around $n=eta L|e_{
m g}|$

E.g., XY chain:
$$e_{
m g} = -1/\pi$$

Then partition function is dominant by weight around

$$n = \beta L / \pi$$

1.2 Performance of SETTN

• L=14 XY chain

$$H = J \sum_{\langle i,j \rangle} (S_i^x S_j^x + S_i^y S_j^y)$$

> 1.2 Summary of SETTN

The problem is still very challenging for 2D system at Low T.

Exponential Tensor Renormalization Group (XTRG)

[1] BC, L. Chen, Z. Chen, W. Li, A. Weichselbaum. PRX 8, 031082

[2] L. Chen, D.-W. Qu, H. Li, BC, S.-S. Gong, J. von Delft, A. Weichselbaum, W. Li. PRB(R) 99, 140404

[3] H. Li, BC, Z. Chen, J. von Delft, A. Weichselbaum, W. Li. PRB(R) 100, 045110

1.3 Basic Idea of XTRG

2) Exponential evolution $\rho_n \cdot \rho_n \rightarrow \rho_{n+1}$

> 1.3 Reduce numbers of truncation steps

logarithmic scaling of entanglement entropy

 $S_E \sim (c/3) \ln \beta$

1.3 Performance of XTRG

1 order of magnitude better than Linear scheme and also SETTN

▶ 1.3 More data of XTRG

Extraction of central charge

✓ Long Heisenberg chain

 10^{0} αT^η, α=0.667, η=0.996 × XTRG, D* = 150 $T^{\mu}, \mu = -2.01$ O D* = 250 L = 300ల>¹⁰⁻² • o[>] 0.2 10⁻⁴ 0 10⁻² 10⁰ 10^{2} 10⁻² 10⁻¹ 10⁰ 10¹ 10² т $\alpha = \frac{\pi c}{3v}$ $c_V = \alpha T^{\eta}$

1.3 Summary of XTRG

Differentiable Tensor Renormalization Group (∂TRG)

BC, Y. Gao, Y.-B. Guo, Y. Liu, H.-H. Zhao, H.-J. Liao, L. Wang, T. Xiang, W. Li, Z. Y. Xie. PRB(R) 101, 220409

▶ 1.4 Basic Idea of ∂TRG

1) SETTN initialization at high temperature

2) Forward TRG

▶ 1.4 Basic Idea of ∂TRG

By using Automatic Differentiation, We can calculate environment $\frac{\partial \mathcal{L}}{\partial W_i}$ and update W_i

4) Repeat forward and backward for all $$W_i$$

within optimization depth n_d

Deep optimization in thermal tensor network

1.4 2D transverse-field Ising model

$$H = J \sum_{i,j} S_i^z S_j^z + h \sum_i S_i^x$$

with *J*=-1,
$$h = h_c = 1.522$$

relative error of free energy

1.4 transverse-field Ising model

$$H = J \sum_{i,j} S_i^z S_j^z + h \sum_i S_i^x \text{ with } J = -1, h = 1 \qquad T_c = 0.42$$

internal energy

specific heat

accurate estimate of transition temperature ~1%

➢ Summary of ∂TRG

Thermal Tensor Network Approach for Quantum Many-Body systems

Bin-Bin Chen

Nov. 2, 2022

➢ Outline

1. Finite-T tensor network methods

- 1.1 Tensor network basis
- 1.2 Series-expansion thermal tensor network
- 1.3 Exponential tensor renormalization group
- 1.4 Differentiable tensor renormalization group

2. Application 1

- 2.1 Square-lattice Hubbard model
- 2.2 Triangular-lattice Hubbard model
- 2.3 Magic-angle twisted bilayer graphene model

3. Application 2

- 3.1 Quantum entanglement and disorder operator
- 3.2 topological disorder operator

XTRG study of Finite-T square-lattice Hubbard model

BC, C. Chen, Z. Chen, J. Cui, Y. Zhai, A. Weichselbaum, J. von Delft, Z. Y. Meng, and W. Li. PRB 103, L041107

2.1 High-Tc Superconductivity

> 2.1 Mechanism of High-Tc?

Copper oxide plane

Single-band Hubbard model

 $H = -t \sum_{\langle ij \rangle \sigma} c^{\dagger}_{i\sigma} c_{j\sigma} + U \sum_{i} n_{i\uparrow} n_{i\downarrow}$

> 2.1 Correlated matter: Ultra-cold Fermions

Realization of Fermi-Hubbard Model

Greiner's group, Nature 2017

- ✓ trap fermions in optical lattice
- ✓ tunable interactions
- \checkmark single-site resolution

Current Experimental Scope

"Long-range" Antiferromagnet

2.1 Ultra-cold Fermions in optical lattice

0.3

0.2

0.1

0.0

2

 $(-1)^{i} C_{d}$

Doping

Long-range Antiferromagnet

Spin Removal

↑+

♠

- fitting & analysis on the raw experimental data
- Determination of temperature and model parameters

Efficient & accurate numerical simulations! (XTRG is promising!)

Greiner's group (Harvard), Nature 2017

d (sites)

8

2.1 Spin correlation under half-filling

Greiner, Nature 2017

2.1 Spin correlation under half-filling

• spin correlation function

$$C_S(d) \equiv \frac{1}{N_d} \sum_{|i-j|=d} \frac{\langle \hat{S}_i \cdot \hat{S}_j \rangle}{S(S+1)}$$

spontaneous magnetization

$$m_s \equiv \sqrt{S(\pi,\pi) - S(0)}$$

Greiner, Nature 2017

DMRG study of triangular-lattice Hubbard model

BC, Z. Chen, S.-S. Gong, D. N. Sheng, W. Li, and A. Weichselbaum, PRB 106, 094420 (Editors' Suggestion)

2.2 Motivation from experiments

✓ Organic salt compound:

$$\kappa - (BEDT)_2(Cu)_2(CN)_3$$

Spin Liquid?

vanished conductivity

0.14

Yamashita et al, Nat. Phys. 5, 44 (2008)

2.2 Motivation from theoretical studies

• Nonmagnetic insulator candidates:

- U(1) spin liquid with spinon Fermi surface --- Motrunich, Phys. Rev. B 72, 045105 (2005)
- Gapped Z2 spin liquid

--- Zhu, Phys. Rev. B 92, 041105 (2015)

Nodal gapless spin liquid

--- Mishmash, Phys. Rev. Lett. 111, 157203 (2015)

- DMRG Results:
- 2-leg ladder: U(1) gapless
 Finite DMRG: gapped
 infinite DMRG: chiral spin liquid
 Shirakawa, PRB 96, 205130 (2017)
 Szasz, PRX 10, 021042 (2020)

2.2 Model and Main Results (Phase diagram)

2.2 Phase diagram

2.2 Chiral Spin Liquid: TRS-breaking

 \checkmark chiral correlation/order: $\langle \chi_i \chi_j \rangle$ and $\langle \chi_i \rangle$ with $\chi_i = \sigma_l \times \sigma_m \cdot \sigma_n$

2.2 CSL: On the need for long cylinder

- Strong boundary oscillation (slow decay ~20 columns)
- ✓ L > 40 is needed.

We note that, L = 8 in [Shirakawa, PRB 96, 205130 (2017)]

2.2 Chiral Spin Liquid: chiral edge mode

semion sector of CSL

thus, 4-fold degeneracy

block diagonal with conserved charge Q and total spin S

Ground state of twisted bilayer graphene model

BC, Y. D. Liao, Z.Chen, O. Vafek, J. Kang, W. Li, and Z. Y. Meng. Nat. Commun. 12, 5480 (2021)

2.3 Magic-Angle Twisted Bilayer Graphene

Twisted Bilayer Graphene (TBG)

Moire pattern

Narrow band at magic angle

New playground for strongly correlated states

Serlin et al., Science 2020

• QAH at 3/4-filling

Cao, Nature 556, 43 (2018) Cao, Nature 556, 80 (2018)

2.3 Magic-Angle Twisted Bilayer Graphene

✓ Coulomb interactions between electrons in narrow bands:

$$U = \frac{1}{2} \sum_{r,r'} \sum_{\sigma,\sigma'} \rho_{\sigma}(r) \ V(r-r') \ \rho_{\sigma'}(r')$$

2.3 Real-space effective model

$$U = \frac{1}{2} \sum_{r,r'} \sum_{\sigma,\sigma'} \rho_{\sigma}(r) \ V(r - r') \ \rho_{\sigma'}(r')$$

- ✓ 3-peak structure
- $\checkmark\,$ centered at the honeycomb lattice

Projecting onto these Wannier basis:

$$c_{\sigma}(r) = \frac{1}{3} \sum_{R} \sum_{p=1}^{6} \sum_{j=\pm 1}^{6} w_{R+\delta_{p},j}(r) d_{j,\sigma}(R+\delta_{p})$$

J. Kang, O. Vafek, PRX 8, 031088 (2018)

$$U = \frac{V_0}{2} \sum_{R} \left(\sum_{j,\sigma} O_{j\sigma}(R) \right)^2$$

With $O_{j,\sigma}(R) = Q_{j,\sigma}(R) + \alpha T_{j,\sigma}(R)$

J. Kang, O. Vafek, PRL 122, 246401 (2019)

2.3 TBG Model

Cluster charge

- $Q_{\bigcirc} = \sum_{i \in \bigcirc} \hat{n}_i / 3$
- Hopping Assisted interaction

 $T_{\bigcirc} = \sum_{j \in \bigcirc} [(-1)^j c^{\dagger}_{j+1} c_j + h.c.]$

J. Kang, O. Vafek, **PRL** 122, 246401 (2019)

2.3 Ground-state phase diagram

• TBG Model $H = U_0 \sum_{\bigcirc} (Q_{\bigcirc} + \alpha T_{\bigcirc} - 1)^2$

2.3 Magic-angle twisted bilayer graphene

2.3 Identify QAH

- Spontaneous time-reversal symmetry (TRS) breaking?
 Loop current?
- non-zero Chern number?
- ✓ Spontaneous TRS breaking

• current operator
$$J \equiv i(c_i^{\dagger}c_j - c_j^{\dagger}c_i)$$

2.3 Identify QAH

- ✓ Spontaneous time-reversal symmetry breaking□ Loop current?
- non-zero Chern number?

✓ Loop current
$$J \equiv i(c_i^{\dagger}c_j - c_j^{\dagger}c_i)$$

2.3 Identify QAH

- ✓ Spontaneous time-reversal symmetry breaking
- ✓ Loop current
- ✓ non-zero Chern number
- Flux Insertion (Laughlin's thought experiment)

Thermodynamics of twisted bilayer graphene model

X. Lin, BC*, Wei Li, Zi Yang Meng*, and Tao Shi*, Phys. Rev. Lett. 128, 157201

2.3 Finite-T phase diagram

> 2.3 Exciton proliferation regime

✓ Finite-T phase diagram

Spectral function

Mean-field estimation of Tc ~ 100 K

Obtained Tc ~ 10 K

Exciton corrects the spectrum!

2.3 Thermodynamic signature of exciton

Thermal Tensor Network Approach for Quantum Many-Body systems

Bin-Bin Chen

Nov. 9, 2022

➢ Outline

1. Finite-T tensor network methods

- 1.1 Tensor network basis
- 1.2 Series-expansion thermal tensor network
- 1.3 Exponential tensor renormalization group
- 1.4 Differentiable tensor renormalization group

2. Application 1

- 2.1 Square-lattice Hubbard model
- 2.2 Triangular-lattice Hubbard model
- 2.3 Magic-angle twisted bilayer graphene model

3. Application 2

- 3.1 Quantum entanglement and disorder operator
- 3.2 topological disorder operator

> 3.1 Entanglement and Disorder Operator

✓ Landau paradigm for phase transition:

✓ E.g. Ferromagnetic phase transition

> 3.1 Entanglement and Disorder Operator

✓ Landau paradigm for phase transition:

	Disorder phase	Ordered phase	
	Symmetric	Symmetry breakin _{	g!
Order parameter (e.g. Magnetization for FM)			
(Exp	Short-range correlation onential decay of correlation)	Long-range correlation of local order parameter	
Disorder operator to characterize symmetric phase Kadanoff and Ceva, 1971			
	non-vanishing expectation	vanishing expectation	

3.1 Entanglement and Disorder Operator

✓ <u>Disorder operator</u> to characterize symmetric phase

Classical 2D FM Ising model [Kadanoff and Ceva, 1971]

partial transformation $U = \prod_{\mathbf{r}} U_{\mathbf{r}}$

✓ Modified 2D FM Ising model with defect

changing the coupling constant J to have an antiferromagnetic sign

✓ Disorder operator (variable)

$$\langle \mu(\tilde{\boldsymbol{r}})\mu(\tilde{\boldsymbol{r}}')\rangle = \frac{Z[\Gamma]}{Z} \equiv \exp(-\Delta F[\Gamma]/T)$$

$$\langle \mu(\tilde{\boldsymbol{r}})\mu(\tilde{\boldsymbol{r}}')\rangle = \begin{cases} \operatorname{const.} \times \frac{e^{-\kappa|\tilde{\boldsymbol{r}}-\tilde{\boldsymbol{r}}'|}}{|\boldsymbol{r}-\boldsymbol{r}'|^{1/2}}, & T < T_c \\ \frac{\operatorname{const.}}{|\boldsymbol{r}-\boldsymbol{r}'|^{1/4}}, & T = T_c \\ |\langle \mu \rangle|^2 + O(e^{-\kappa'|\tilde{\boldsymbol{r}}-\tilde{\boldsymbol{r}}'|}), & T > T_c \end{cases}$$

non-vanishing expectation in symmetry-preserving phase

> 3.1 Entanglement and Disorder Operator

✓ Disorder operator and entanglement

E.g. Free and interacting fermion systems

[W. Jiang, **BC**, et al. arXiv: 2209.07103 (2022)]

✓ non-interacting fermion✓ interacting fermion in 1D

$$S_{2} = -2 \log \left| X_{M}^{\rho} \left(\frac{\pi}{2} \right) \right|,$$

$$S_{3} = - \log \left| X_{M}^{\rho} \left(\frac{2\pi}{3} \right) \right|.$$

✓ interacting fermion in 2D

> 3.1 Entanglement and Disorder Operator

✓ Topological entanglement entropy

[Kitaev and Preskill, PRL 96, 110404 (2006)]

For a disk in the plane, the von Neumann Entanglement entropy

$$S(
ho) = lpha L - \gamma + \cdots$$

where

$$\gamma = \log \mathcal{D} \quad \text{with} \quad \mathcal{D} = \sqrt{\sum_{a} d_{a}^{2}}$$

Total quantum dimension Summing over all superselection sectors (anyon types)

Disorder operator to detect topological order?

Topological Disorder Parameter

BC, Hong-Hao Tu, Zi Yang Meng, Meng Cheng, PRB 106, 094415 (2022)

> 3.2 Topological Disorder Parameter

✓ Topological disorder parameter (TDP)

(Constant correction that appears in the ground-state expectation value of a partial symmetry transformation applied to a connected spatial region M.)

$$\ln |\langle U_M(g)\rangle| = -\alpha |\partial M| + \gamma_g + \cdots \qquad \gamma_g = \ln d_g$$

✓ Useful properties of symmetry defect [M. Barkeshli, P. Bonderson, M. Cheng, and Z. Wang, PRB 100, 115147 (2019)]

- 1. Total quantum dimension of g defects defined as $\mathcal{D}_g = \sqrt{\sum_{a_g \in \mathcal{C}_g} d_{a_g}^2}$, one can prove $\mathcal{D}_g = \mathcal{D}$
- 2. the number of *g*-defect types is the same as the number of *g*-invariant anyons.
- 3. if all anyons are Abelian, then all g defects must have the same quantum dimensions.
> 3.2 Topological Disorder Parameter

\checkmark Z_N toric code model

$$A_{\square} = X_1 X_2 X_3 X_4$$

• At each site, there is a **Z_N Spin**:

$$|n\rangle$$
 $(n=0,1,\cdots,N-1)$

• Clock operator **Z**, and shift operator **X**:

$$Z|n\rangle = \omega^n |n\rangle, \ X|n\rangle = |[n+1]_N\rangle$$

• Hamiltonian

$$H = -\sum_{\Box} (A_{\Box} + \text{H.c.}) - \sum_{\blacksquare} (B_{\blacksquare} + \text{H.c.})$$
$$-\sum_{\mathbf{r}} (h_x X_{\mathbf{r}} + h_z Z_{\mathbf{r}} + \text{H.c.}),$$

> 3.2 Topological Disorder Parameter

 \checkmark charge conjugation symmetry: $U = \prod_{\mathbf{r}} U_{\mathbf{r}} \quad U_{\mathbf{r}} |n\rangle_{\mathbf{r}} = |N - n\rangle_{\mathbf{r}}$

under the action of U, excitations transform as $\ C: e^a m^b o e^{N-a} m^{N-b}$

1) For odd N, no anyon is invariant. $d_{\sigma_C} = N$ 2) For even N, 4 C-invariant anyons: $d_{a_C} = \frac{N}{2}$ 1, $e^{N/2}$, $m^{N/2}$, $e^{N/2}m^{N/2}$ $d_{a_C} = \frac{N}{2}$ TDP = ln $\frac{N}{2}$

3.2 Topological Disorder Parameter

\checkmark DMRG calculations for Z3 toric code at h>0:

• First-order transition at h=0.4

• TEE = ln3 for h<0.4

[Schulz et al New J. Phys. 14 025005 (2012)]

> 3.2 Topological Disorder Parameter

✓ DMRG calculations for the h>0 cases:

