Theoretical and Computational Condensed Matter Group

Valley-spintronics in atomically thin 2D semiconductorsCHEN
Valley-spintronics in atomically thin 2D semiconductors


Academic staff

Research staff


Dr. Gang CHEN
Dr. Zi Yang MENG
Prof. Shunqing SHEN
Dr. Chenjie WANG
Prof. Zidan WANG
Prof. Wang YAO
Dr. Shizhong ZHANG
Dr. Bo FU
Dr. Jianlong FU
Dr. Chunjiong HUANG
Dr. Chaokai LI
Dr. Ci LI
Dr. Binbin MAO
Dr. Shangqiang NING
Mr. Jianju TANG
Mr. Huanwen WANG
Dr. Zheng YAN
Dr. Dawei ZHAI
Dr. Xiaotian ZHANG
Prof. Tao ZHOU
Ms. Wenting GONG (PhD)
Mr. Min-Quan HE (
Mr. Ziang HU (PhD)
Mr. Richang HUANG (PhD)
Mr. Zhengqiao LI (PhD)
Mr. Hongyu LU (PhD)
Mr. Rui LUO (PhD)
Mr. Rui WANG (MPhil)
Mr. Chengxin XIAO (PhD)
Mr. Zilei XIAO (PhD)
Mr. Xuchen YANG (PhD)
Mr. Xuping YAO (PhD)
Mr. Zhang XU (PhD)
Mr. Jiarui ZHAO (PhD)
Mr. Huiyuan ZHENG (PhD)
Mr. Chengkang ZHOU (PhD)


Research Activities

Theoretical condensed matter physics is a very important area in physical sciences. It concerns with many fundamental subjects and has very wide and potentially important applications in material science, biophysical science, high technology, and even economy and finance. We have a very active research group in this field with focuses in topological matters, 2D materials, spintronics and valleytronics, nanoelectronics, quantum many-body physics. The group closely collaborates with the ECMM group.

The group’s current research interests include:

  1. strongly correlated electron systems;
  2. topological matters;
  3. quantum materials;
  4. quantum computing;
  5. quantum magnetism;
  6. spintronics and valleytronics;
  7. quantum transport;
  8. semiconductor optics;
  9. interdisciplinary study of cold atom physics and condensed matter physics
  10. computational approaches in quantum many-body systems
  11. scientific computing and neuromorphic AI accelerator in physics

Some Representative Publications

(For the complete publication list of the department, please go back to Research.)

Dr. G. Chen

  1. "Upper branch magnetism in quantum magnets: Collapses of excited levels and emergent selection rules", Changle Liu, Fei-Ye Li, and Gang Chen, Physical Review B, 99, 224407 (2019)
  2. "Non-Kitaev spin liquids in Kitaev materials", Yao Dong Li, Xu Yang, Yi Zhou, Gang Chen, Physical Review B, 99, 205119 (2019)
  3. "Experimental signatures of a three-dimensional quantum spin liquid in effective spin-1/2 Ce2Zr2O7 pyrochlore", Bin Gao, Tong Chen, David W. Tam, Chien-Lung Huang, Kalyan Sasmal, Devashibhai T. Adroja, Feng Ye, Huibo Cao, Gabriele Sala, Matthew B. Stone, Christopher Baines, Joel A. T. Barker, Haoyu Hu, Jae-Ho Chung, Xianghan Xu, Sang-Wook Cheong, Manivannan Nallaiyan, Stefano Spagna, M. Brian Maple, Andriy H. Nevidomskyy, Emilia Morosan, Gang Chen, Pengcheng Dai, Nature Physics, (2019)

Dr. Z.Y. Meng

  1. "Emmy Noether looks at the deconfined quantum critical point", Nvsen Ma, Yi-Zhuang You, Zi Yang Meng, Physical Review Letters, 122, 175701 (2019)
  2. "Monte Carlo Study of Compact Quantum Electrodynamics with Fermionic Matter: the Parent State of Quantum Phases”, Xiao Yan Xu, Yang Qi, Long Zhang, Fakher F. Assaad, Cenke Xu, Zi Yang Meng, Physical Review X, 9, 021022 (2019)

Prof. S.Q. Shen

  1. "Negative magnetoresistance in Dirac semimetal Cd3As2", H. Li, H. He, H.Z. Lu, H. Zhang, H. Liu, R. Ma, Z. Fan, S.Q. Shen, and J. Wang, Nature Communications, 7, 10301 (2016)
  2. "Topological superconducting states in monolayer FeSe/SrTiO3", N.N. Hao and S.Q. Shen, Physical Review B, 92, 165104 (2015)
  3. "Weak antilocalization and localization in disordered and interacting Weyl semimetals", Hai-Z. Lu and S.Q. Shen, Physical Review B, 92, 035203 (2015)
  4. "Finite temperature conductivity and magnetoconductivity of topological insulators" H.Z. Lu and S.Q. Shen, Physical Review Letters, 112, 146601 (2014)
  5. "Quantum transport in magnetic topological insulator thin film", H.Z. Lu, A. Zhao and S.Q. Shen, Physical Review Letters, 111, 146802 (2013)
  6. "Intervalley scattering and localization behaviors of spin-valley coupled Dirac fermions", H.Z. Lu, A. Zhao and S.Q. Shen, Physical Review Letters, 111, 146802 (2013)
  7. "Competition between Weak Localization and Antilocalization in Topological Surface States", H.Z. Lu, W. Yao, D. Xiao, and S.Q. Shen, Physical Review Letters, 107, 076801 (2011)
  8. "Topological Anderson Insulator", J. Li, R.L. Chu, J.K. Jain and S.Q. Shen, Physical Review Letters, 102, 136806 (2009).

Prof. Z.D. Wang

  1. "Novel Z2 topological metals and semimetals", Y. X. Zhao and Z. D. Wang, Phys. Rev. Lett., 116, 016401 (2016)
  2. “Unified theory of PT and CP invariant topological metals and nodal superconductors”, Y. X. Zhao, A. P. Schynder, and Z. D. Wang, Phys. Rev. Lett.,116, 156402 (2016)
  3. “Disordered Weyl semimetals and their topological family”, Y.X. Zhao and Z.D. Wang, Phys. Rev. Lett., 114, 206602 (2015)
  4. “Topological classification and stability of Fermi surfaces”, Y.X. Zhao and Z.D. Wang, Phys. Rev. Lett., 110,  240404 (2013)
  5. "Unconventional Geometric Quantum Computation", S.L. Zhu and Z.D. Wang, Phys. Rev. Lett., 91, 187902 (2003)
  6. "Implementation of Universal Quantum Gates Based on Nonadiabatic Geometric Phases", S.L. Zhu and Z.D. Wang, Phys. Rev. Lett., 89, 097902 (2002)

Prof. W. Yao

  1. "Signatures of moiré-trapped valley excitons in MoSe2/WSe2 heterobilayers”, K. Seyler, P. Rivera, H. Yu, N. Wilson, E. Ray, D. Mandrus, J. Yan, W. Yao, X. Xu, Nature 567, 66 (2019)
  2. “Moire excitons: from programmable quantum emitter arrays to spin-orbit coupled artificial lattices”, H. Yu, G. Liu, J. Tang, X. Xu & W. Yao, Science Advances 3, e1701696 (2017)
  3. "Topological Mosaic in Moiré superlattices of van der Waals heterobilayers", Q. Tong, H. Yu, Q. Zhu, Y. Wang, X. Xu, Wang Yao, Nature Physics, 13, 356 (2017)
  4. “Excitonic luminescence upconversion in a two-dimensional semiconductor”, A. Jones, Hongyi Yu, J. Schaibley, J. Yan, D. Mandrus, T. Taniguchi, K. Watanabe, H. Dery, W. Yao and X. Xu, Nature Physics, 12, 323 (2016)
  5. "Anomalous light cones and valley optical selection rules of interlayer excitons in twisted heterobilayers", Hongyi Yu, Y. Wang, Qingjun Tong, X. Xu and Wang Yao, Phys. Rev. Lett., 115, 187002 (2015)
  6. “Nonlinear valley and spin currents from Fermi pocket anisotropy in 2D crystals”, H.Y. Yu, Y. Wu, G.B. Liu, X.D. Xu and W. Yao, Phys. Rev. Lett. 113, 156603 (2014) 
  7. “Dirac cones and Dirac saddle points of bright excitons in monolayer transition metal dichalcogenides”, H.Y. Yu, G.B. Liu, P. Gong, X.D. Xu and W. Yao, Nature Communications, 5, 3876 (2014)
  8. "Optical generation of excitonic valley coherence in monolayer WSe2", A. Jones, H.Y. Yu, N. Ghimire, S.F. Wu, G. Aivazian, J. Ross, B. Zhao, J.Q. Yan, D. Mandrus, D. Xiao, W. Yao, X.D. Xu, Nature Nanotechnology, 8, 634 (2013)
  9. "Magnetoelectric effects and valley controlled spin quantum gates in transition metal dichalcogenide bilayers", Z.R. Gong, G.B. Liu, H.Y. Yu, D. Xiao, X.D. Cui, X.D. Xu, W. Yao, Nature Communications, 4, 2053 (2013)
  10. "Coupled Spin and Valley Physics in Monolayers of MoS2 and Other Group-VI Dichalcogenides", D. Xiao, G.B. Liu, W.X. Feng, X.D. Xu and W. Yao, Physical Review Letters, 108, 196802 (2012)


Dr. S.Z. Zhang

  1. "Evidence for Universal Relations Describing a Gas with p-Wave Interactions", C. Luciuk, S. Trotzky, S. Smale, Z. Yu, S. Zhang, and J. H. Thywissen, Nature Physics, 6, 599-605 (2016)
  2. "Universal Relations for a Fermi Gas Close to a p-Wave Interaction Resonance", Z.H. Yu, J.H. Thywissen, S.Z. Zhang, Physical Review Letters, 115, 135304:1-5 (2015)
  3. “Transverse Demagnetization Dynamics of a Unitary Fermi Gas”, A.B. Bardon, S. Beattie, C. Luciuk, W. Cairncross, D. Fine, N.S. Cheng, G.J.A. Edge, E. Taylor, S.Z. Zhang, S. Trotzky, J.H. Thywissen, Science, 344, 722-724 (2014)
  4. “Theory of quantum oscillations in the vortex-liquid state of high-Tc superconductors”,S. Banerjee, S.Z. Zhang, M. Randeria, Nature Communications, 4, 1700:1-7 (2013)
  5. "Bose-Einstein condensates with spin-orbit interaction", T.L. Ho and S.Z. Zhang, Physics Review Letter, 107, 150403 (2011)
  6. "BEC-BCS crossover induced by a synthetic non-abelian gauge field", J.P. Vyasanakere, S.Z. Zhang and V. Shenoy, Physics Review B, 84, 014512 (2011)
  7. "Atom loss maximum in ultracold Fermi gases", S.Z. Zhang and T.L. Ho, New Journal of Physics, 13, 055003 (2011)
  8. "Universal properties of the ultracold Fermi gas", S.Z. Zhang and A.J. Leggett, Physics Review A, 79, 023601 (2009)
Last updated on 22 October 2020